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The measure of association in 2 � 2 (K � K) contingency tables known as
tetrachoric (polychoric) correlation coefficient is recalled. These measures
rely on two assumptions: 1) there exist continuous latent variables under-
lying the contingency table and 2) joint distribution of corresponding stan-
dard normal deviates is bivariate normal. It is shown that, in practice, the
tetrachoric (polychoric) correlation coefficient is an estimate of Pearson cor-
relation coefficient between the latent variables. Consequently, these mea-
sures do not depend on bias nor on marginal frequencies of the table, which
implies a natural and convenient partition of information (carried by the
contingency table), between association, bias and probability of the event and
subsequently enables the analysis of how other scores depend on bias and
marginal frequencies. Results extended to K � K tables lead to eventual re-
duction in dimensionality from K2 to 2K. The theoretical findings are il-
lustrated through analysis of real-life, 6 � 6 contingency tables on verification
of quantitative precipitation forecasts.

Keywords: tetrachoric correlation coefficient, contingency table, forecast
evaluation

1. Introduction

The history of applying contingency tables to forecast verification, given in
detail by Daan (1984) and Murphy (1996), is a rather long one. Nevertheless,
during 1990s contingency tables became focal point of several papers (Gandin
and Murphy, 1992; Barnston, 1992; Gerrity, 1992; Marzban, 1998). Even
though they are most naturally used in verification of forecasts of meteo-
rological events such as severe weather and occurrence of precipitation, in
practice contingency tables are even more frequently used to describe the
accuracy of forecasts of meteorological elements that are continuous by na-
ture, such as temperature, wind speed, visibility, etc. Moreover, they are also
used in forecast verification of meteorological fields (Ward and Folland, 1991;
Potts et al., 1996), due to the fact that through contingency tables the pro-
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perties of a set of forecasts can be condensed and very clearly displayed, whe-
reas by using the correlation coefficient or the mean square error these pro-
perties often remain hidden. On the other hand, although multidimensional
means such as scatter diagrams or residual plots can be employed for as-
sessing performance, there are certain situations in which we need single
values by which one can continuously monitor development of forecasting
methods. As a consequence, a number of scores defined as certain functions of
contingency table elements have been introduced into meteorological practice.
These scores focus each on certain facet of forecast quality often exhibiting
some undesired properties. Here we have: 1) dependence on the probability of
the event, which prevents comparison of forecasts between regions with dif-
ferent climate, 2) dependence on bias which may lead to »hedging« in order to
improve particular score and 3) dependence on the number of categories, i.e. on
the dimension of contingency table, which prevents the comparison between
tables of different dimensions. In attempt to avoid some of these difficulties as
well as to satisfy needs of specific users, over twenty measures for a simple
2 � 2 contingency table have been proposed. This has resulted in a conside-
rable »confusion« and has certainly obscured the primary goal to continuously
monitor the progress in weather forecasting.

In the present paper we recall tetrachoric and polychoric correlation coef-
ficients (TCC and PCC) as measures of association in 2 � 2 and K � K contin-
gency tables, respectively. The tetrachoric correlation is proposed by Pearson
(1900) as a measure of association between two be-categorical variables. A
short history of polychoric correlation is given in Olsson (1979). The essential
assumption to be made, the mild one, is that the two variates that are ordered
categorical variables (observation and forecast) have come from dichotomizing
or polychotomizing underlying continuous variables. These continuous variab-
les are sometimes called latent variables, since they are observed only through
category frequencies and not directly. Another assumption, the strong one,
requires that latent variables follow, at least approximately, the bivariate
normal distribution (BND). Although both coefficients have been widely used
in social sciences, it is probably this second assumption that, together with
computational difficulties, had prevented wider use of tetrachoric and poly-
choric coefficients in meteorological practice. However, the BND is not applied
to the latent variables directly, but to corresponding standard normal deviates
(SND-s) and, as we show, in many cases it can be used to obtain estimate of
classical Pearson correlation coefficient between the latent variables. More-
over, it may be argued, as Pearson and Heron (1913) did, that some dis-
tribution should be supposed since by the very nature of the problem we do
not have any direct information on latent variables. In such a case the BND
with its numerous properties is the most natural choice. Gringorten (1971,
1972) first pointed out the possibility of using BND for the formulation of
forecasts based on auto regression, which could serve as a reference level
in the forecast verification. Juras (1982) used this approach to estimate
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probabilities of simultaneous occurrence of weather events at different loca-
tions.

Subsequently, we recall a number of nice properties that make the TCC an
appealing measure of association. Although these properties do not depend
neither on BND nor on latent-variables assumption, they are most easily
verified through the BND. However, the latent variables framework implies
simple and natural partition of information contained in 2 � 2 table, between
correlation coefficient, bias and one marginal frequency (e.g. climatological
frequency of the event), with straightforward extension to higher-order tables.
Also it suggests that TCC and PCC should be less prone to the three above
mentioned deficiencies of scores.

The BND framework may be used to analyze properties of various scores.
Since 2 � 2 table possesses 3 degrees of freedom, one piece of information has
to be fixed in order to present results clearly. Here we fix the TCC and analyze
four common scores that are used in meteorology, as functions of bias and one
marginal frequency. Similar investigations have been done by Barnston (1992)
and Potts et al. (1996) using the Monte Carlo method. All analyzed scores are
subsequently applied to and compared on 2 � 2 and 6 � 6 contingency tables
taken from real word.

The conclusions emphasize the need for continuous and detailed monitor-
ing of categorical forecasts, and subsequent evaluation of the scores used.

2. Tetrachoric and polychoric correlation coefficients

2.1. Notation and assumptions: Latent-variables model of forecasting process

In what follows, if not stated otherwise, frequency always stands for the
relative frequency. We consider a 2 � 2 verification problem and the corres-
ponding contingency table of relative frequencies (Table 1). Here a is the rela-
tive frequency by which an event is observed and forecasted, PO = a + c is the
frequency by which the event is observed, while PF = a + b is the frequency by
which it is forecasted. PO and PF are called the marginal frequencies and a the
joint frequency of the contingency table. Obviously, the table is completely
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Table 1. Definition of elements of a contingency table.

Observation

Yes No

Forecast
Yes a b PF

No c d 1 – PF

PO 1 – PO



determined by the three frequencies (probabilities), a, PO, PF. The bias is
denoted by B = PF / PO.

Having only the contingency table it is implicitly accepted that we are
dealing with categorical variables, which in our case are observation (O) and
forecast (F). In order to measure a degree of association between them we
assume that frequencies of categories are obtained by dichotomizing certain
continuous variables, XO and XF, underlying the categorical variables O and F.
Variables XO and XF are called latent variables since, for practical reasons,
they are not observed directly but only through their categorical counterparts.
The extension of the latent variables framework to K � K tables for ordered
categorical variables is obvious, the only difference being an increased number
of thresholds.

One may wonder what are the continuous variables, XO and XF, behind a
2 � 2 contingency table or the corresponding verification problem. On the
observation side it might be a particular meteorological element e.g. wind
speed, precipitation, cloudiness, etc. We say the event is observed if the ob-
served value XO exceeds some previously fixed threshold value xO. On the fore-
cast side, the supposed continuous variable might be the judgment probability
assessed by the forecaster (subjective forecasting), or it may be the value of the
meteorological element itself, if such a value is provided by the forecasting
system, e.g. numerical model (objective forecasting). The event is forecasted if
XF > xF for some decision threshold xF. There is a fundamental difference
between observation and decision thresholds in that the former is given by
some convention, while the latter is completely at forecaster’s disposal.

In order to asses the quality of forecasts it is appealing to estimate the
correlation coefficient (r) between XO and XF. (For the aspects of forecasting
performance that are measured by r – and those that are not measured, i.e.
ignored – see Murphy (1995)). In order to estimate the correlation coefficient
some assumption on latent-variables’ distributions must be made, and it is
here the BND comes forth. The purpose of the next subsection is to show that
very often this is an acceptable assumption.

2.2. Transformation to SND

Any continuous random variable X may be transformed into standard
normal variable ZX by the formula:

ZX = �–1 (�X(X)) (1)

Here, the �X is cumulative distribution function (c.d.f.) of X, while � is
c.d.f. of standard normal distribution. Variable ZX is called standard normal
deviate (SND) corresponding to X.

Obviously, transformation (1) is monotone. Somewhat surprisingly, it is
also linear to a high degree, what, of course, depends on the actual distribution
of X. So we systematically take variables from gamma and beta families (e.g.
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Wilks, 1995) as X and perform weighted linear regression between X and , the
weight being given by the p.d.f. of X. The correlation coefficients obtained are
rather high (Figure 1). In case of gamma family the correlation coefficient is
always greater than 0.89, and it is even larger in case of beta family.

Gamma family of p.d.f.-s is bounded on the left by zero, the beta family is
bounded on two sides, while members of both families vary from symmetric to
highly skewed ones. Both distributions are very common in meteorology and,
taking into account the above results on linear regression, we may conclude
that in practice, transformation (1) would be close to a linear one.

Returning back to the problem of association in contingency table and
using the apparent linearity of transformation, we see that correlation
coefficients between latent variables XO and XF and between corresponding
SND-s ZO and ZF should be approximately the same. Now in order to estimate
the correlation coefficient between the transformed variables it is plausible, if
not the only possible – due to complete lack of any additional information, to
assume that random vector (ZO, ZF) follows the BND (see also Pearson and
Heron (1913, p. 177)).
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Figure 1. Correlation coefficient between gamma (upper panel) and beta (lower panel) variables
and corresponding standard normal deviates as the function of respective parameters.



2.3. Tetrachoric correlation

Let zO = �–1 (PO) and zF = �–1 (PF) be the standard normal deviates (SND)
corresponding to marginal probabilities PO and PF, respectively. The tetracho-
ric correlation coefficient (TCC), introduced by Pearson (1900), is the correla-
tion coefficient r that satisfies

a = f( , , )x x r dx dx
zz FO

1 2 1 2
��

�� , (2)

where �(x1, x2, r) is the bivariate normal p.d.f.
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The lines x1 = zO and x2 = zF divide this bivariate normal into four
quadrants whose probabilities correspond to relative frequencies in the 2 � 2
table.

Clearly, the SND-s zO and zF are uniquely determined by PO and PF,
respectively. The double integral in (2) can be expressed as (National Bureau
of Standards, 1959):
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showing that the joint frequency a is a monotone function of r for any fixed zO

and zF. It follows that the tetrachoric correlation r is well defined by (2). The
same reference contains the tables of joint probabilities of BND. To calculate r
from the 2 � 2 table one may use tetrachoric series expansion of (2) developed
by Pearson (1900), the approach that has been adopted by Brown (1977).
Programs in FORTRAN and MATLAB that use numerical integration and (4)
can be obtained from authors.

Pearson (1900, p. 14) provided a (complicated) expression for large-sample
standard error of TCC, that does not use the BND assumption but requires
that the entries of the contingency table, that are realizations of certain
categorical variables, be mutually independent. Hamdan (1970) showed that
the same TCC results from maximum likelihood method and subsequently
obtained a simple asymptotic expression for standard error.

In what follows we discuss some properties of the TCC that are valid for
any 2 � 2 table without reference to latent-variables or BND. However, these
properties are most easily verified by considering the table has been obtained
by dichotomizing some BND. Throughout rest of the paper, the TCC of a 2 � 2
contingency table, and also polychoric correlation coefficient for K � K table
(next subsection), are denoted by Sr. Since the Sr is a correlation coefficient, it
takes values between –1 and 1. Let us discuss some further properties:
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1) Random forecast, where joint frequencies are products of corresponding
marginal frequencies, is equivalent to Sr = 0.

2) For constant forecasts (where a = b = 0 or c = d = 0) the Sr is undeter-
mined. Indeed, any such table can be approached by a sequence of tables
having the same observation threshold and arbitrary but fixed Sr, with fore-
cast threshold tending to plus or minus infinity, as necessary. This reflects the
fact that with constant forecast, any association between forecast and ob-
servation is absent. Certainly, to produce constant forecasts no skill at all is
required.

3) Equality to zero of some off-diagonal element (b = 0 or c = 0) is equi-
valent to Sr = 1, since in order to have one quadrant empty, the isolines of
BND surface (ellipses), must degenerate to the regression line. This stresses
that Sr is a measure of association only. Perfect forecast (b = 0 and c = 0) is
equivalent to Sr = 1 and bias B = 1. Although forecasts without false alarms
(b = 0) or without missed events (c = 0) certainly possess some skill, extreme
caution is necessary. First, having a category with zero frequency means
either the total number of observation-forecast pairs is not large enough or
the assumption on continuous latent variables is not the appropriate one.
However, under this assumption zero value of b or c may be replaced with any
value lower than 0.5/N, and corresponding Sr may be calculated, leading to the
analysis on how it depends on chosen b or c values. Note also that standard
errors are not available in this case (see Pearson and Heron (1913)).

4) The complement symmetry is valid, that is the Sr does not depend on
what is chosen to be event vs. non-event. Indeed, this is equivalent to multi-
plying SND-s zO and zF with –1, without changing the underlying BND.

5) The transpose symmetry is valid, that is Sr does not change if forecast
and observation are interchanged. This property follows from analogous pro-
perty of the ordinary correlation coefficient.

In contrast to properties 1–5, next property relies on the latent-variables
model of forecasting process.

6) The Sr depends neither on the climatological probability (PO), nor on
the bias (B), since the Sr is correlation coefficient between latent variables
that depends on the variables themselves, and not on any thresholds. Thus it
may be expected that Sr would facilitate comparison of forecasts over different
climatological regions, and discourage the »hedging« that may happen by
overforecasting or underforecasting a particular category.

2.4. Polychoric correlation

The situation with K > 2 forecast/observation categories results in K � K
contingency tables. The table element, that is the relative frequency of fore-
casting i-th category while the j-th one is observed, is denoted by Pij, i,j =
1,..., K. Marginal frequencies, that are the frequencies of forecast (observation)
categories, are denoted by Pi� (P�i). Then the K – 1 probabilities of exceeding
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respective observation (forecast) thresholds are denoted by POi = j>i P�j (PFi

= j>i Pj�), i = 1,..., K – 1. Analogously to the 2 � 2 case, biases are defined by
Bi = PFi / POi, i = 1,..., K – 1.

The transformation to SND-s is applied exactly as before, resulting in
2(K–1) transformed threshold values zOi and zFi dividing the categories. Poly-
choric correlation coefficient (PCC) is correlation coefficient between the SND-s
assuming their joint p.d.f. being the bivariate normal.

There are several possibilities to estimate the PCC. Weighted mean of
tetrachoric coefficients of two-class tables obtained by partitioning the origi-
nal K � K table may be used. Maximum likelihood (ML) method can be applied
in two variants. The conditional ML can be used to estimate the TCC for the
thresholds zOi and zFi (Martinson and Hamdan, 1971), or joint ML can be used
to simultaneously estimate the TCC and the thresholds (Olsson, 1979). The
former method, implemented in IMSL (1975), is computationally much simpler,
while the practical differences between the two methods are small (Olsson,
1979). Both methods produce asymptotic standard errors of respective estima-
tes. Finally, since the data are already categorized, the minimum Chi-Square
(MCS) method may be convenient. It has the same asymptotic properties as
ML method (Kendall and Stuart, 1973).

3. Examination of some common scores

3.1. Definition of scores and motivation

In this section we examine some common scores for 2 � 2 verification
tables, as functions of the triplet (Sr, B, PO). Incidentally, from the preceding
section it follows that knowledge of (Sr, B, PO) is sufficient to reconstruct the
contingency table uniquely. On the other hand, by using the triplet, informa-
tion contained in the table is conveniently divided into three independent
parts: the tetrachoric correlation coefficient (Sr) measures the association in
the table, bias (B) measures the discrepancy between frequencies of forecasts
and observations, while the frequency of the event (PO) measures rareness of
the event (rare events usually are more difficult to forecast).

One may ask what is gained by such kind of analysis? We are examining
the behavior of certain scores within the simplest and the most well-known
theoretical model, namely dichotomous BND. In such a model we know what
is the exact amount of association. It is given by the ordinary correlation
coefficient (Sr). Besides, it is convenient to express the results in terms of PO

and B, since both quantities have obvious interpretation in the forecasting
context.

Among a large number of different measures used in forecast verification,
we only consider four of them here. First three are the well known Peirce
measure (sP), Heidke measure (sH), and square-root of Doolittle measure (sD).
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Fourth is the Yule’s odds ratio skill score (SY), introduced into meteorological
practice recently by Stephenson (2000). In our notation these four scores are
defined by:

sP =
a P P

P P

O F

O O

�

�( )1
, (5)

sH =
2

2

( )a P P

P P P P

O F

O F O F

�

� �
, (6)

sD =
a P P

P P P P

O F

O O F F

�

� �( ) ( )1 1
(7)

SY =
a P P

a P P a P P

O F

O F O F

�

� � � �[ ]1 2 2( )
(8)

Apparently, all four measures contain the expression a – POPF in the
numerator. Pearson (1900) calls it the transfer per unit of the total frequency,
since its magnitude measures the divergence of the actual table from the table
corresponding to random forecasts. This indicates that all the four scores are
measures of association and Pearson has shown that Sr is a function of transfer,
too. He proposed that any reasonable measure of association should vanish
with transfer, and also it would be beneficial if the measure agrees with
correlation coefficient for median divisions (PO = PF = 0.5), in which case we
have (Sheppard, 1898):

Sr = sin
p

2
4 1( )a �

�

�
�

�

�
� . (9)

Thus, a number of scores that contain sine function have been proposed
for evaluation of association in contingency tables. They may be interpreted as
attempts to estimate the TCC, (see Johnson and Kotz (1972, p. 119)). In
meteorological literature such examples are somewhat rare (see Brooks and
Carruthers (1953, p. 238) and Panofsky and Brier (1958, p. 103)).

In what follows, the letter s without indices denotes any of the first three
measures sP, sH and sD. In the special case when PO = PF = 0.5 they reduce to
the form s = 4a–1, a property which is shared by a large number of scores used
in meteorology (Eq. 24 Woodcock, 1976). Thus it is tempting to apply the
transform analogous to (9):

S = sin
p

2
s

�

�
�

�

�
� (10)

to the first three scores, sP, sH, and sD. The modified measures thus obtained
are denoted by SP, SH, and SD, respectively. This transformation brings the
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numerical values of original measures closer to the respective values of the
tetrachoric correlation coefficient Sr, making the comparison more straight-
forward, while the essential properties remain unchanged. A short calculation
shows that the SY score for P0 = PF = 0.5 is already a sine-like function of the
joint frequency (a), and it equals Sr for Sr = �1 and 0.

3.2. Comparison of scores

We restrict the analysis to two typical situations. First we fix the amount
of association to a reasonably high value (Sr = 0.85) that may be expected in
modern forecasting systems. Then we fix probability of the event to a relati-
vely low value (PO = 0.1) having in mind rare events. Results for other values
are similar.
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Figure 2. Modified Pierce (a), Heidke (b) and Doolittle (c) score, and the Yule’s (d) score as a
function of bias (B) and probability of event (PO), for a fixed value of the TCC, Sr = 0.85; plotted
are the differences between respective scores and the Sr. Contour interval equals 0.05 for graphs
(a) – (c) and 0.01 for graph (d). The dashed curves on plots (a) – (c) denote the loci of maxima of
respective fields with respect to B for a fixed PO.



Fig. 2 shows how the four considered scores depend on PO and B when the
TCC is fixed to Sr = 0.85. Actually, the differences between the scores and Sr

= 0.85 are plotted in order to make the figure more easy to read. As it was
already noted, the first three measures are equal to Sr if marginal probabilities
are equal to one half, that is for P0 = 0.5, B = 1. The difference SY – Sr at the
same point, although does not equal zero, exhibits a minimum. Apparently, all
the four scores are close to Sr for moderate biases (0.8 < B < 1.4) and for the
events that are not too rare (PO > 0.15).

One can notice that scores SP, SH, SD decrease along the line B = 1 as the
probability of the event, PO, decreases. This decrease, that is very similar for all
three measures, makes them unsuccessful when they are applied to rare events.
On the contrary, the score SY increases along the line B = 1, as PO decreases.

Fig. 2 clearly shows that for values of PO close to 0.5 (upper edge of the
graph) the first three scores decrease as the bias diverges from B = 1. In other
words, for large PO all three measures penalize the existence of bias in forecasts
in almost the same way, which may be considered reasonable. Unfortunately,
the measures do not keep this property at small values of PO (rare events). In
this case, the Peirce score favors overforecasting (B > 1) as has already been
reported by Stansky et al. (1989), Doswell et al. (1990) and Marzban (1998),
while the Heidke and Doolittle scores become insensitive to bias. The weakly
expressed maxima of SH and SD for small P0 are found not at B = 1 but at
somewhat larger values of bias (dashed lines on graphs (b) and (c)). Ap-
parently, these two scores become practically equal for biases between 0.8 and
1.2. The isolines of SY look quite similar to those of SH and SD. However, the
SY score increases in all directions starting from B = 1, P0 = 0.5. For large P0
it favors biases that are less than one, and even more the biases greater than
one (overforecasting). For small P0 it becomes more or less insensitive to bias.

Fig. 3 shows differences between individual scores and the Sr as a function
of bias and Sr itself, the frequency of event, PO, being fixed to 0.1. For all
scores the differences are zero when Sr equals zero and the same is valid for the
SY score when Sr equals one. The differences are biggest for medium values of
TCC, 0.3 < Sr < 0.7. Dashed lines on graphs (a) – (c) denote the loci of maxima
of respective differences as a function of bias for every (constant) value of TCC.
It is seen again that in the case of relatively low frequency of the event, Peirce
score favors overforecasting. Almost horizontal isolines suggests that in the
same situation the other three scores show little sensitivity to the bias. As before,
Heidke and Doolittle scores slightly favor overforecasting, while the Yule’s
score slightly favors underforecasting (maximal values are reached at B = 0).

4. An example of the 2 � 2 contingency table

Table 2 contains two contingency matrices for categorical forecasts of fog
with a lead time of 3 hours (Kruizinga et al., 1989). They describe the overall
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quality of statistical and persistence forecasts, where the latter ones serve as
control forecasts.

Let us use the contingency table of statistical method to give an explicit
calculation of the TCC. The threshold between observation categories is de-
fined by the frequency of the event PO = 0.061, and the corresponding SND
value is zO = –1.546. Similarly for the forecast categories we have PF = 0.141
and zF = –1.075. The joint probability that the fog was forecasted and ob-
served is a = 0.048. By solving equation (2) for r we find the TCC of statistical
method, Sr = 0.81.

If one adopts sP as the measure of skill, then sP = 0.69 for the statistical
method and sP = 0.54 for the persistence model suggests the former method is
having higher skill. Ranking on SP scores with values 0.89 and 0.75 leads to
the same conclusion. The Sr value for the statistical method is 0.81, and for
the persistent method it is 0.90, indicating that the association between
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forecasts and observations in the latter method is better than in the former. It
is not rare that various measures give various rankings for a specific set of
forecasts, since each measure gauges its own facet of forecast quality. In this
example the conflict between Sr and SP is due to the fact that the SP (and sP)
measure favors overforecasting of rare events, and its relatively large value is
due to a large bias (B > 2). The Sr is a measure of association only and it does
not depend on bias.

One can find that statistical forecasts are still better for those users who
are susceptible to undetected events. However, the persistent forecasts, which
are based only on the most recent observation of visibility, could be easily
adjusted to the needs of these users. Namely, the fog should be forecasted not
only in the case when it is already present, but more often, when visibility is
less than, say, 3 kilometers. For such a modified autoregressive forecasting
system, Sr would remain the same but sP score would probably increase to a
value even greater than the value for statistical forecasts. This example illu-
strates that Sr, like the ordinary correlation coefficient, indicates a »potential
value« of forecasts as it was noted by Murphy and Epstein (1989) and Murphy
(1995) for anomaly and ordinary correlation coefficients.

5. Multicategorical tables

Recently meteorologists have returned to the problem of finding an opti-
mal scoring matrix for multicategorical contingency tables (Gandin and Mur-
phy, 1992; Gerrity, 1992; Barnston, 1992; Potts et al., 1996). All the quoted
papers start from the assumption that each of the unskilled forecast strate-
gies, such as randomly choosing a forecast category or always forecasting the
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Table 2. Contingency tables for very short-range forecasts of fog based on a statistical model and

persistence, after Kruizinga et al. (1989, Table 6).

Statistical Persistence

Fcst. \ Obs. Yes No PF Fcst. \ Obs. Yes No PF

Yes 0.048 0.093 0.141 Yes 0.033 0.013 0.046

No 0.013 0.846 0.859 No 0.027 0.927 0.954

PO 0.061 0.939 PO 0.061 0.939

sP = 0.69 SP = 0.89 sP = 0.54 SP = 0.75

sD = 0.48 SD = 0.68 sD = 0.61 SD = 0.82

SY = 0.94 SY = 0.97

Sr = 0.81 Sr = 0.90

Bias = 2.33 Bias = 0.76



same category, must receive a zero score. This premise seems plausible, but it
also has opponents (Rousseau, 1980). Many of the national verification sum-
maries, especially those for the forecasts with a large lead time, indicate that
categories around prevailing conditions are more often used than the catego-
ries for rare, extreme events. It seems that the subjective (or official) criteria
for evaluation of forecasts differs from the principles of equitability.

Gandin and Murphy (1992) have shown that there is an unlimited number
of K � K scoring matrices that satisfy the principles of equitability. They
pointed out that for a 2 � 2 contingency table and symmetric scoring matrices,
the sP score and its monotonic transformations are the only scores that satis-
fies these principles (see also (Marzban and Lakshmanan, 1999)). Gerrity
(1992) has introduced a subset of Gandin and Murphy scoring matrices that
depend on marginal probabilities of observations, only. He also showed that
the resulting equitable skill score (ESS) for a K � K contingency table can be
obtained by averaging the sP scores computed for the K–1 two-class tables
generated by partitioning the original contingency table at its K–1 thresholds.
It follows that ESS should retain the same (undesired) properties of the sP

score that were identified in Section 3.
The SP decreases rapidly when the frequencies of observed categories are

far from one half (Fig. 2). This is the reason why for the same degree of
association among forecasts and observation (as measured by Sr), the ESS
decrease as the number of categories increase. This property of ESS, identified
already by Barnston (1992), makes it difficult to compare the contingency
tables of different dimensions, and even the contingency tables of the same
dimensions, if they have different marginal frequencies. This probably moti-
vated Barnston to investigate the connection between ESS and ordinary cor-
relation coefficient for tables with different dimensions (see Fig. 3a–d of his
paper). The results of Section 3 (Fig. 3) on SP score show that the ESS score
would also prefer overforecasting of outermost categories that are less fre-
quently observed.

5.1. Fictitious examples

In this subsection some equitable scores are compared to Sr assuming a
situation with three equiprobable categories of observation. In such situation
any 3 � 3 matrix of joint probabilities of some standard BND with all the
marginal probabilities equal to 1/3 could be interpreted as the performance
matrix of some set of forecasts. On the other side any such matrix can be used
for construction of an equitable scoring matrix, just by subtracting 1/9 from
each element, dividing subsequently the whole matrix by the sum of diagonal
elements and finally multiplying by three (since, the equitability here implies
sums of rows to be zero, while sum of diagonal elements must be three). An
example of such an equiprobable performance matrix that is obtained from
BND with r = 0.71 is given in Table 3a. The corresponding scoring matrix
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(Table 3b) differs only slightly from the scoring matrix obtained by Gerrity’s
method (Table 3c). We applied both matrices (b) and (c), as well as the linear
error in probability space (LEPS) scoring matrix derived by Potts et al. (1996,
Table 1), suitably normalized, to the series of equiprobable 3 � 3 tables gene-
rated form BNDs with varying correlation coefficients. The differences be-
tween respective scores and the underlying correlation coefficient are shown
at Fig. 4. Estimates obtained by matrix (b) differ from the true correlation
coefficient by not more than 0.005. Actually the matrix (b), i.e. the value r =
0.71 behind it, was chosen such that the corresponding score reconstructs the
underlying correlation coefficient as close as possible. For the other two scor-
ing matrices the differences are slightly greater. This points out the similarity
between SP and Sr for symmetric multicategorical tables as has already been
noted in the 2 � 2 case for moderate biases and probabilities of the event that
were not too small.
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Figure 4. Equitable skill scores calculated for a series of 3 � 3 contingency tables with equi-
probable categories generated from the standard BND with varying correlation coefficients; plot-
ted are the differences between scores and the underlying correlation coefficient. Curves denoted
by Sr

*, SP and LEPS are obtained by applying the scoring matrix (b) and (c) from Table 3 and the
scoring matrix of Potts et al. (1996, Table 1), respectively.

Table 3. (a) Joint probabilities of BND for three equiprobable categories with r = 0.71, (b) the

equitable scoring matrix obtained from (a) as is explained in the text and (c) the scoring matrix for

three equiprobable categories from Gerrity (1992).

(a) (b) (c)

0.219 0.093 0.022 1.278 –0.222 –1.057 1.25 –0.25 –1

0.093 0.147 0.093 –0.222 0.443 –0.222 –0.25 0.5 –0.25

0.022 0.093 0.219 –1.057 –0.222 1.278 –1 –0.25 1.25



5.2. Real-world example

Starting a few years ago the National Precipitation Verification Unit (NPVU)
of the United States National Weather Service (NWS) regularly disseminates
various statistics on verification of quantitative precipitation forecasts (QPF)
from the River Forecasts Centers. The original multiple-categories contin-
gency tables are available as well. Here we take the annual summary of QPF
for day 1 (0–24 hour period), the contiguous US for the year 2005. The table is
available at the NPVU web pages, http://www.hpc.ncep.noaa.gov/npvu/qpfv/.
In its original form this 6 � 6 table counts for more than 11 million fore-
cast-observation pairs categorized according the thresholds of 0.01, 0.10, 0.25,
0.50 and 1.00 inch. Let us mention that we do not advocate the agregation of
data from different climatological regions into a single contingency table, but
here we use the table to give some illustrative examples. Table 4 presents the
data as relative frequencies given in percents.

As a first step, the thresholds between categories are calculated from
marginal frequencies by inverting the 1-dimensional standard normal c.d.f. In
this way we get the normalized thresholds, zOi = 1.12, 1.67, 2.03, 2.41, 2.93,
and zFi = 0.85, 1.47, 1.99, 2.49, 3.08, for i = 1, ... ,5. Then the PCC of the table
is estimated by the ML and the MCS method, both conditioned to the above
thresholds. In ML (MCS) method the underlying function is maximized (mini-
mized) by simple bisection algorithm, using the fact that joint probabilities of
any standard BND are uniquely determined by a complete set of corres-
ponding marginal frequencies and the correlation coefficient. The ML method
gives 0.795, while the MCS one gives 0.782. The greatest difference between
the theoretical and the observed joint frequencies is 0.35 percent for the ML
method (Table 5), and 0.44 percent for the MCS one (table not shown). The
sum of absolute differences over all cells is close to 1.8 percent for ML and 2.4
percent for the MCS method. Thus, the whole table may be reconstructed
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Table 4. Annual summary of quantitative precipitation forecasts for day 1, the contiguous US, for

the year 2005 from the NPVU of the NWS, in percents. The thresholds dividing the categories C1 –

C6 are 0.01, 0.1, 0.25, 0.5 and 1 inch of precipitation, respectivelly.

Observation

Forec. C1 C2 C3 C4 C5 C6 

C1 76.96 2.76 0.40 0.13 0.05 0.01 80.31

C2 7.79 3.53 0.87 0.28 0.09 0.02 12.57

C3 1.67 1.62 0.90 0.41 0.15 0.03 4.77

C4 0.32 0.43 0.42 0.34 0.17 0.04 1.71

C5 0.05 0.08 0.10 0.13 0.13 0.05 0.54

C6 0.01 0.01 0.01 0.02 0.03 0.03 0.10

 86.79 8.41 2.70 1.31 0.62 0.17 100.00



almost perfectly using the five marginal frequencies of observations, five mar-
ginal frequencies of forecasts and the correlation coefficient. Alternatively,
biases with frequencies of events may be plotted vs. respective thresholds (Fig.
5). By adding a single extra number, the TCC, all the essential information
contained in the table is conveniently displayed. In general, if we are given the
absolute frequencies, a K � K table could be reduced to 2K data (the TCC,
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Table 5. Differences expressed in percents between original contingency table (Table 4) and the

corresponding table of joint probabilities of BND (having the same marginal probabilities and the

correlation coefficient equal to 0.795, obtained by the ML method).

Observation

Forec. C1 C2 C3 C4 C5 C6

C1 0.214 –0.255 –0.040 0.037 0.034 0.009

C2 –0.263 0.355 –0.059 –0.050 0.007 0.011

C3 –0.037 –0.010 0.093 –0.021 –0.028 0.004

C4 0.055 –0.081 0.020 0.032 –0.016 –0.010

C5 0.025 –0.011 –0.014 0.005 0.005 –0.010

C6 0.005 0.002 –0.000 –0.002 –0.002 –0.003

0.01 0.10 0.25 0.50 1.00
0

0.5

1

1.5

2

Threshold [inch]

B
ia

s

13.2 4.79

2.10

0.79

0.17

S
r
= 0.795

Figure 5. Biases vs. observation-threshold values for Table 4, labeled with the relative frequen-
cies of exceeding the respective thresholds (PO, in percents). The polychoric correlation coefficient,
displayed in lower left corner, expresses the amount of association. It is the only additional peace
of information required to essentialy reconstruct the original table.



2K–2 marginal frequencies, and the total number of observations), the poly-
choric correlation coefficient being the only non-trivial one. By measuring
solely the association in the contingency table it should enable comparison
between tables of different sizes and/or marginal frequencies. Moreover, by
examining the differences between the original contingency table and the
corresponding theoretical one, it might be possible to address some specific
features of a particular forecasting system.

The standard errors based on the very large total number of inputs (N) in
this example are unrealistically small, so we do not report them. This points to
the problem of estimating the number of degrees of freedom, which is
certainly smaller than N. Indeed, the table is comprised from numerical-model
results and corresponding observations, and values for nearby grid elements
are certainly not indepenent. However, let us recall that standard errors are
getting lower as the number of categories increases (Olsson, 1979).

The present example may be used to examine how the various scores
change with the probability (PO) of the event. To that end we partitioned
Table 4 at its thresholds and calculated the previously examined scores
(Section 2) for each of the five 2 � 2 contingency tables obtained. Results are
shown on Fig. 6. The decreasing sequence of PO values corresponding to
respective thresholds is indicated at the upper axis. It is readily seen that
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Figure 6. Various scores calculated for two-class tables obtained by partitioning Table 4 at its
thresholds. The PO values in the upper axes are the same as in Figure 5.



Peirce, Heidke and Doolittle scores decrease considerably, together with PO,
while at the same time Yule’s score slowly increases. On the contrary, the TCC
first remains nearly constant and then slowly decreases as the threshold of
one inch, corresponding to a rather extreme event, is reached.

We may also try to examine the influence of bias on the considered scores
by performing a sort of »hedging« to Table 4. Thus, we simulate the overfor-
casting of precipitation exceeding 1 inch by simply moving all the data from
the middle four forecast categories into the last category. In this way we
obtained a new 6 � 6 table having four middle rows filled with zeros, the first
row common with Table 4 and the last row equal to the sum of all-but-the-first
rows of Table 4. The overall PCC value obtained by the ML method now reads
0.798, while MCS method gives 0.782, which are almost the same as for the
original table. The sum of absolute differences between the fitted and the
observed table is now around 1 percent for the ML, and around 1.8 percent for
the MCS method. The overall Peirce score (ESS) increases from 0.423 for the
original table to 0.711 for the ’hedged’ one.

Finally, in order to examine the trends in precipitation forecasts over last
several years we calculated various parameters for observational thresholds of
0.01 and 1 inch (Table 6). For precipitation exceeding 0.01 inch (PO = 0.12 on
average) we see overall decrease of positive bias (overforecasting) that is par-
ticularly well noticable between years 2003 and 2004. The TCC (Sr) remains
nearly constant over the period. A slight decrease of Peirce (sP) and increase of
Heidke score (sH) between years 2003 and 2004 is primarily a consequence of
the reduced bias (Fig. 2). For precipitation exceeding 1 inch (PO = 0.002 on
average) considerable improvement of negative bias (underforecasting) bet-
ween years 2002 and 2003 is evident. The TCC exibits increase that is most
noticeable between years 2003 and 2004 when it gets close to 0.8 thus ap-
proaching a level of association between observations and forecasts that al-
ready exists for the lower threshold. The increase of sP, sH, sD scores over the
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Table 6. Various parameters calculated for Table and analogous tables for years 2001–2004, for

the two outermost categories.

Threshold = 0.01 inch Threshold = 1 inch

Year 2001 2002 2003 2004 2005 2001 2002 2003 2004 2005

Sr 0.789 0.801 0.802 0.796 0.810 0.646 0.692 0.711 0.760 0.774

sP 0.624 0.637 0.636 0.616 0.633 0.070 0.096 0.129 0.162 0.184

sH 0.478 0.493 0.503 0.513 0.524 0.106 0.141 0.168 0.214 0.230

sD 0.501 0.515 0.523 0.527 0.539 0.122 0.160 0.177 0.225 0.238

SY 0.911 0.918 0.915 0.907 0.917 0.985 0.988 0.990 0.993 0.994

Bias 1.697 1.671 1.614 1.477 1.491 0.332 0.362 0.532 0.516 0.600

PO(%) 0.109 0.111 0.123 0.138 0.132 0.002 0.003 0.002 0.002 0.002



years is a consequence of improved association. Their rather low values as
compared to those for 0.01 inch threshold are due to small PO. Yule’s score, for
low values of PO, is weakly sensitive to bias as well as to Sr. Actually, for PO =
0.002 the SY is greater then 0.9 for all Sr > 0.4 irrespectively of bias, and
increases very slowly as association (Sr) increses (not shown). For PO that
small it is likely that Yule’s score would be close to one. This is also a reason
why Yule’s cube is sometimes reported instead of the original value.

6. Summary and Conclusions

The notions of TCC (PCC) for 2 � 2 (K � K) contingency tables were re-
called. The mild assumption on the existence of continuous latent variables is
distinguished from the strong one that requires BND. However, the latter
assumption is being applied not to latent variables themselves, but to trans-
formed variables whose marginal distributions are exactly normal. Next, it
was shown that, in practice, the transformation of latent variables into SND-s
should be close to a linear one implying that TCC (PCC) should be approxima-
tion of the true correlation coefficient between latent variables. Apparent
linearity of transformation explains the close agreement of 6 � 6 table from
Section 5 with BND.

The TCC possesses a number of properties that are beneficial for any
measure of association as it was discussed in Section 2. Although most of them
are valid for the contingency table itself without any additional asumptions,
from practical point of view it is the latent variables assumption that implies
the most important property. Namely, the TCC does not depend on climato-
logical probability (PO), nor on bias (B). Thus, in practice, it may be expected
that TCC and PCC would facilitate the comparison of forecasts over different
climatological regions, and also be resistant to »hedging«.

Apparently, the TCC and PCC are measures of association only. They can
not be used as measures of overall quality of forecasts, as neither measure can.
Additional quantities are necessary to express the rest of information carried
by the contingency table. It was shown that 2 � 2 table can be perfectly re-
constructed by using the triplet (Sr, B, PO), so the information contained in
the table is naturally and clearly divided between association, bias and (cli-
matological) probability of the event. It is the assumption on continuous latent
variables that gives meaning to the assertion that the three quantities do not
depend on each other. Similar division may be proposed for tables of higher
order. In case of a K � K table with K–1 underlying events of exceeding res-
pective thresholds, we have one correlation coefficient, namely the PCC, K–1
biases and K–1 marginal probabilities. Using these parameters and the BND
we should be able to essentially reconstruct the original table. In practice, the
quality of such a reconstruction should be assesed for each table separately.
The gain should be threefold. First is the reduction in dimensionality from K2
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to 2K (if we add the total number of table elements as an additional para-
meter). Second, all parameters except the PCC are fairly simple with the
meaning obvious even to non-meteorologists. Eventually, the table may be
clearly expressed graphically as in Figure 5. Third, the differences between
observed and theoretical contingency table may be further investigated using
the distribution-oriented approach.

We analyzed the four common scores, namely Peirce, Heidke, Doolittle
and Yule’s measure, (the first three of them transfomed according to (10)), as
functions of Sr, B and PO. It appeared that all the four measures are close to
each other and to Sr for moderate biases (0.8 < B < 1.4) and not-too-rare
events (PO > 0.15). This emphasizes the fact that they are, as many others,
essentially measures of association. However, all four scores change conside-
rably as climatological probability PO is getting small. This is a serious de-
ficiency of many common measures for forecast evaluation, since the values of
a particular score can not be comapared to each other, not even within a
relatively small geographical area, if the frequencies of the event within that
area vary considerably (Reed, 1983). Moreover, different behavior of scores
with respect to bias is found when they are applied to rare vs. non-rare events.
In the latter case existence of bias is penalized. In the former it is favored.
This is in accordance with the well known fact that usual measures like Peirce
or Heidke did not prove suitable for rare events for which a special group of
measures had been developed (e.g. critical success index, Gilbert’s skill score).
Regarding the properties of Yule’s score we actually rediscovered some findings
of Pearson and Heron (1913).

Summarizing, we believe that TCC (Sr) can be used as a measure of
association that is less prone to the above mentioned deficiencies of scores. We
may expect to face somewhat lower values of Sr for forecasts of rare events as
opposed to forecasts of moderate-frequency events. However, this decrese
should be an indication of difficulties related to the forecasting of rare events,
rather than being a characteristic of Sr itself. Essentially Sr is an ordinary
correlation coefficient, a concept that was introduced into statistics by Pearson
a century ago. Over the years the intuition and feeling for its meaning and
usage has been largely developed. Thus its values are much more compre-
hensible than the (usually lower) values of commonly used scores. Besides, it
enables natural partition of information contained in a contingency table
between association and bias, and eventual reduction of dimensionality in case
of multicategorical forecasts.

Certainly, the value and usefulness of any particular score can not be
decided from a single paper, nor can it be decided using heuristic and/or
statistical arguments. The only way is systematic, long-term evaluation of
scores within forecast practice, and this requires the complete contingency
tables or equivalent information to be systematically reported. Unfortunately,
very often this is not the case, preventing us to fully comprehend a large
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number of presently used measures and see how they reflect the very slow but
constant progress in weather forecasting.
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SA@ETAK

Primjena tetrahori~kog i polihori~kog koeficijenta korelacije

u verifikaciji prognoza

Josip Juras i Zoran Pasari}

Tetrahori~ki (polihori~ki) koeficijent korelacije dobro je poznata mjera asocijacije u
kontingencijskim tablicama veli~ine 2 � 2 (K � K). Ove mjere po~ivaju na dvjema pret-
postavkama: 1) U pozadini kontingencijske tablice nalaze se neprekidne latentne va-
rijable, te 2) zajedni~ka funkcija distribucije pripadnih standardnih normalnih devijata
je bivarijantna normalna razdioba. Pokazano je da tetrahori~ki, odnosno polihori~ki
koeficijent korelacije predstavlja procjenu Pearsonovog koeficijenta korelacije izmedju
latentnih varijabli. Posljedi~no, ove mjere ne ovise o pristranosti, kao ni o marginalnim
~estinama, {to rezultira ras~lambom informacije sadr`ane u kontingencijskoj tablici na
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tri dijela. Prvi se odnosi na povezanost, drugi na pristranost, a tre}i daje ~estinu raz-
matrane pojave. Kori{tenjem dobivenog rastava analizirana je ovisnost drugih verifi-
kacijskih mjera o pristranosti i o marginalnim ~estinama. Rezultati su prirodno pro{i-
reni na tablice oblika K � K, pri ~emu se dimenzija problema smanjuje s K2 na 2K.
Teorija je primjenjena u analizi tablica veli~ine 6 � 6 koje opisuju kvantitativne progno-
ze oborine.

Klju~ne rije~i: tetrahori~ki koeficijent korelacije, tablica kontingencije, ocjena prognoza
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