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The convective available potential energy (CAPE) closure and the mois-
ture closure is implemented on an analytical linearized model for large-scale
motions. The model includes cloud-radiation interaction (CRI), gross moist
stability and wind-induced surface heat exchange (WISHE). The model is
done in an equatorial non-rotating atmosphere and is vertically resolved.

As the gravity waves in non-rotating atmosphere map to Kelvin waves in
rotating atmosphere, the modeled modes are fast Kelvin waves that resemble
adiabatic modes, convectively coupled Kelvin modes that are damped and
move with the observed phase speed of 17 ms–1 and the unstable slow moisture
mode. The slow moisture mode owes its propagation speed to WISHE and
instability to CRI and gross moist instability. It is thought that it can be
related to the easterly waves and perhaps even the Madden-Julian oscillation
(MJO).
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1. Introduction

A majority of the analytical models (Emanuel, 1987; Neelin et al., 1987;
Neelin and Yu, 1994; Majda et al., 2004; Khouider and Majda, 2006; Fuchs and
Marki, 2007 etc.) describing the interactions between large-scale motions and
deep convection in the tropics use the convective available potential energy
(CAPE) closure. The CAPE closure implies that the vertically integrated con-
vective heating is proportional to CAPE.

Fuchs and Raymond (2002) developed a simple analytical model that in
addition to CAPE closure had the moisture closure. The moisture closure im-
plies that more moisture there is more precipitation is produced. As a conse-
quence of the moisture closure an interesting unstable mode appeared that
was called the moisture mode (Sobel and Hourinachi, 2000). The model was
not vertically resolved and thus failed to produce convectively coupled Kelvin
waves.
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Using only the moisture closure, Fuchs and Raymond (2007) developed a
vertically resolved that in addition to slow moisture mode modeled the convec-
tively coupled Kelvin waves of the observed phase speed (Straub and Kiladis,
2002). However, the modeled convectively coupled Kelvin waves were not un-
stable what is in disagreement with the observations show.

Fuchs and Marki (2007) used the CAPE closure on a vertically resolved
model of Fuchs and Raymond (2007). The modeled convectively coupled Kel-
vin waves had the observed phase speeds, but were also stable.

The purpose of this paper is to combine the convective closure that is
mainly used today, i.e. the CAPE closure with the moisture closure on a ver-
tically resolved model. The motivation for CAPE closure has been discussed in
Fuchs and Marki (2007) while he motivation for the moisture closure is the
following:

1. Using the daily-mean sounding data averaged over the five KWAJEX
(Kwajalein Experiment) locations, Sobel et al. (2004) show that the correlation
between CAPE and precipitation is weak and negative while the correlation
between the relative humidity and precipitation is positive. Bretherton et al.
(2004) show a strong correlation and almost no phase lag between the actual
precipitation and the precipitation predicted from the relative humidity. They
suggest that the schemes such as Betts-Miller (1986) should use a moisture
adjustment time of 12 h rather than 1 – 2 h.

2. Sobel et al. (2001) explored the shallow-water equations under the weak
temperature gradient (WTG) approximation where they assume that the ver-
tical structure of the temperature is confined to a single profile associated with
deep convection. The convective heating is controlled by a moisture variable
advected by the flow. The system of equations is balanced by the temperature
equation rather than the momentum equation (geostrophic balance) because
of the WTG approximation. The consequence is that there are no gravity
modes as they are assumed to propagate rapidly. The mode that the authors
found of particular interest was the eastward propagating mode on f plane. It
is propagating eastward for the moisture decreasing poleward in the back-
ground state. That mode is unstable for low wavenumbers and it arises from
the model irrespective of WTG approximation. In their derivation, Sobel et al.
(2001) use the quantity that controls the difference between the precipitation
and the moisture convergence that is essentially Neelin and Held’s (1987)
gross moist stability (GMS). They do not consider the case when GMS is un-
stable, but from their dispersion relation it is apparent that if GMS is nega-
tive, the eastward propagating mode would be unstable for all wavenumbers.
Sobel and Bretherton (2003) simulated numerically a similar mode to the one
of Sobel et al. (2001) and called it the stationary moisture mode.

3. Using the data from Tropical Ocean Global Atmsophere Coupled Ocean-
Atmosphere Response Experiment (TOGA COARE) Carrillo and Raymond
(2005) calculate the reduced Bernoulli function that is essentially just the
negative of the nominator in Neelin and Held’s GMS (the minor differences
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between the two are irrelevant for this paper). They show that the Bernoulli
function is positive (GMS negative) when the spatially averaged infrared tem-
perature is dominated by the shallower clouds and negative when it is domi-
nated by deeper clouds, thus moistening and drying the atmosphere respec-
tively.

The moisture closure (Fuchs and Raymond, 2002, 2007) implies that the
precipitation rate increases linearly with the relative humidity and that the
time needed to relax the moisture profile to equilibrium is one day. It re-
produces the moisture mode of Sobel et al. (2001) and Sobel and Bretherton
(2003). The CAPE closure (Fuchs and Marki, 2007) implies that the increased
CAPE, represented by decreased midlevel potential temperature results in
increased precipitation.

The model in this paper incorporates the assumptions of Fuchs and Ray-
mond (2002, 2007) and Fuchs and Marki (2007). It thus incorporates both, the
CAPE closure and the moist convection (moisture closure), as well as cloud-
-radiation interactions (CRI), the gross moist stability and wind-induced sur-
face heat exchange (WISHE). It is restricted to a non-rotating atmosphere for
simplicity, but it is vertically resolved. As the gravity modes in non-rotating
atmosphere map into Kelvin modes in rotating atmosphere, the gravity modes
are called the Kelvin modes in this paper. The model calculates the free Kelvin
modes, convectively coupled Kelvin modes of the observed speed 17 ms–1 that
are damped, and the moisture mode. It gives us a better understanding of
Kelvin waves as well as the other tropical disturbances such as the Mad-
den-Julian oscillation (MJO) or easterly waves as they might be connected to
the moisture mode.

2. Model

The model consists of six linearized governing equations for large scale
motions in the non-rotating atmosphere (the horizontal momentum equation,
the hydrostatic equation, the continuity equation, the buoyancy equation, the
moisture equation and the moist entropy equation):

∂
∂

∂
∂

u
t x

+ P
= 0 (1)

∂
∂
P

z
b− = 0 (2)

∂
∂

∂
∂

u
x

w
z

+ = 0 (3)

∂
∂
b
t

wB+ G = SB (4)

GEOFIZIKA, VOL. 24, NO. 1, 2007, 29–42 31



∂
∂
q
t

wQ+ G = SQ (5)

∂
∂
e
t

wE+ G = SE (6)

where u, P, w, b, q, e, GB, GQ, GE, SB, SQ, SE are given in table 1. All the
variables are perturbations.

As in Fuchs and Raymond (2002, 2007) I assume that the vertically inte-
grated dry entropy source term, B, depends on scaled perturbation in preci-
pitation rate, P, minus the vertically integrated radiative cooling rate, R:

B = S z dz P RB
h

( ) = −∫0
(7)

The integrated moisture source term, Q, depends on surface evaporation rate,
E, minus the precipitation rate:

Q = S z dz E PQ
h

( )
0∫ = − (8)

The integrated moist entropy source term, Î, depends on evaporation rate
minus the radiative cooling rate:

Î = S z dz E RE
h

( ) = −∫0
(9)

h is the depth of the troposphere. Precipitation rate P is parametrized as:

P = a hq z dz bdz
hh

( ) − ∫∫ 00
(10)

where a is moisture relaxation rate taken as 1 day–1, and h is the buoyancy re-
laxation rate. This equation implements two very important physical mecha-
nisms and combines the two closures from Fuchs and Raymond (2007) and
Fuchs and Marki (2007). The first term tells us that with more moisture there
is more precipitation; that is called the moisture closure. The second term
represents CAPE and tells us that increased CAPE, represented by decreased
midlevel potential temperature, results in increased precipitation; that is cal-
led the CAPE closure. Radiative cooling rate is:

R = –ae q z dz
h

( )
0∫ (11)

where e is the cloud-radiative feedback parameter taken as e ≈ 0.2 (see Fuchs
and Raymond, 2002) and surface evaporation rate is:

E = CmusDq (12)
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Table 1. Parameters and their values

Parameter Expression Value/dimensions
horizontal velocity u [ms–1]

Exner function P
~ m2s–2K–1

Exner function*mean potential temperature P = q0P
~ [m2s–2]

vertical velocity w [ms–1]

scaled dry entropy b = gsd / Cp [ms–2]

scaled mixing ratio q = gLr / CpTR [ms–2]

scaled moist entropy e = gs/Cp [ms–2]

Brunt-Väisälä frequency GB =
g

C
ds
dzp

d0
[s–2]

GQ =
gL

C T
dr
dzp R

t0
[s–2]

moist static stability GE =
g

C
ds
dzp

0
[s–2]

scaled dry entropy source SB =
g

C T
Q

p R
[ms–3]

scaled moisture source SQ = –
gL

C T
P

p R
r [ms–3]

scaled moist entropy source SE =
g

C T
Q

p R
R –

g
C

F
zp

e∂
∂ [ms–3]

acceleration of gravity g [9.81 ms–2]

specific heat of air at constant pressure Cp 1005 Jkg–1K–1

vertical wavenumber m = kGB
1/2 / w [m–1]

first baroclinic vertical wavenumber m0 = p / h [m–1]

depth of the troposphere h 15 km
horizontal wavenumber k [m–1]

frequency w [s–1]

dimensionless phase speed F = W / k calculated
dimensionless frequency W = w / a calculated

dimensionless horizontal wavenumber k = kGB
1/2 / am from 1.3 till 15

planetary zonal wavenumber l = 2p / 40000 [km–1]

moisture relaxation rate a 1/day
buoyancy relaxation rate h 1/day

nondimensional CAPE parameter g = h / a

cloud-radiative feedback parameter e 0.2
WISHE parameter d = mCmDq / 2 –5 ´ 10–8s–2

dimensionless WISHE parameter L = d(1 + e) / aGB
1/2 –0.4

scaled minimum moist entropy height H = d / h 0.25, 0.5, 0.75
scaled moist entropy difference De = De0 / (hGB) 0.13, 0.26, 0.39

dimensionless gross moist stability GM =
G

G

E
h

B
h

z w z dz

w z dz

( ) ( )

( )

0

0

∫
∫



where C is the transfer coefficient, m = –u0 / ueff is the negative ratio between
the velocities of the ocean relative to the ambient air and the effective wind.
For strong ambient easterly winds that are chosen in this linearized para-
meterization of WISHE: m = –1. The parameter us is the surface wind velocity
and Dq is the scaled difference between the saturation mixing ratio at the sea
surface temperature and the subcloud mixing ratio. The surface sensible heat
fluxes are ignored as they are small compared to the latent heat fluxes over
the tropical oceans.

To solve the governing system of equations (1) – (6), the vertical velocity
profile from Fuchs and Raymond (2007) is used:

w(z) =
Bm

B

0
22 1G F( )−

sin( ) exp( )sin( )m z i mz0 + −





F
p

F
(13)

where m0 = p / h. m = kGB
1/2 / w where k is the horizontal wavenumber and

w the frequency. The nondimensionalized phase speed is then F = m0 / m
or F = W / k where the nondimensionalized horizontal wavenumber is
k = kGB

1/2 / am0 and the nondimensionalized frequency is W = w / a. For more
details on parameters see table 1. To obtain (13) Fuchs and Raymond (2007)
assumed that the heating vertical profile has the structure of the first baro-
clinic mode:

SB(z) = 0.5Bm0 sin(m0z) (14)

where the vertically integrated heating: B is an unknown (note that the
integral of (14) through the troposphere indeed results in B). The equation
(14) will further be used in solving the governing system of equations and
obtaining the dispersion relation.

3. Calculating the dispersion relation

By assuming that all the variables in the governing system of equations
(1) – (6) are proportional to exp[i(kx – wt)], it is straightforward to write the
polarization relations for the governing system of equations. To obtain the
dispersion relation I will need to combine the polarization relations and the
thermodynamic assumptions of the model as a function of the unknown B,
which will ultimately cancel out of each term. I first combine the equations
(7), (10) and (11):

B = S z dzB
h

( ) =∫0
P – R = a(1 + e) q z dz b z dz

hh
( ) ( )− ∫∫ h

00
(15)

The scaled moist entropy perturbation, e, can be written as e = b + q (Fuchs
and Raymond, 2002). The vertically integrated heating can then be written as

B = a(1 + e) e z dz b z dz
h h

( ) ( ) ( )− + +∫ ∫a e g1
0 0

(16)
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where the nondimensional CAPE parameter g is: g = h / a. It is straight-
forward to calculate the vertical integral of the scaled entropy perturbation, b,
from the polarization relation for buoyancy (i.e. equation 4)

b z dz
i

S z dz w z dzB B
hhh

( ) ( ) ( )= −



∫∫∫ w

G
000

(17)

The vertical velocity perturbation is given by (13). Its integral is then:

w z dz
h

( )
0∫ =
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2
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2
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+ −
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(18)

The vertical integral of the moist entropy perturbation is not that obvious.
First the moist entropy equation (6) needs to be integrated where the right-
hand-side comes from equation (9):

∂
∂t

e z dz z w z dz E R
h

E( ) ( ) ( )
0∫ ∫+ = −G (19)

Noting the expressions (11) and (12) for radiative cooling rate and the
surface evaporation rate:
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h
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us =
i w

z zk

∂
∂



 




=0

= i
m B

k
i

B

0
2

22 1
1

G F

p

F( )
exp

−
+ −


 










. (21)

CmusDq is the WISHE term. The integral in height of vertical velocity pertur-
bation multiplied by moist static stability, which is a function of height, is re-
lated to the gross moist stability of Neelin and Held (1987), and it comes from
the moist entropy equation. Fuchs and Raymond (2007) took it as the un-
known and varied the vertical profiles of GE(z). To understand the nondimen-
sional parameters in dispersion relation, the following is a review of the gross
moist stability parametrization of Fuchs and Raymond (2007).

The nondimensionalized gross moist stability GM is defined as:

GM =
G

G

E
h

B
h

z w z dz

w z dz

( ) ( )

( )

0

0

∫
∫

(22)

where
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GE(z) =
g

C

ds z

dzp

0( )
=

de z

dz
0( )

(23)

The quantity s0 is the mean moist entropy profile and e0 is the scaled moist
entropy profile. To estimate the value of GM it is assumed that the scaled mean
moist entropy e0, obeys the following relations:

GE1 = –
De

d
0 0 < z < d (24)

GE2 =
De

h d
0

−
h > z > d (25)

where the moist entropy takes the same value at the top of the troposphere as
at the surface.

It is now possible to write the last unknown integral needed for dispersion
relation:
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(26)

where De = De0 / hGB is the nondimensionalized scaled moist entropy diffe-
rence and H = d / h is the nondimensionalized minimum entropy height.

Plugging the equation (18) into (17) gives the integral of the scaled entro-
py perturbation b. Plugging the equations (26), (21) and (17) into (20) gives
the integral of the scaled moist entropy perturbation e. Such obtained inte-
grals for b and e are then plugged into (16) resulting in the dispersion relation
for moist convection with gross moist stability, CRI, WISHE and CAPE:

kF3 + iF2 – kF + ie +

+ 0.5i(1 + e)F2 exp −

 


 − 


 










− + −

 







i i
p

F

p

F

L p

F
1 1cos exp

k




+

+
g F e F p

F

p

F

( )
. exp cos

+ + −

 


 − 


 














i
i

k

k
1 05 1





– ij H H− −







1
2

1[ ]cos( )p –

– ij
F

2

2
exp −


 


i

p

F
H H1 1− 


 










− − 

 


















cos cos
p

F

p

F
= 0 (27)
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where De(1 + e) / H(1 – H) = j, and e is the cloud-radiative feedback para-
meter. L = d(1 + e) / (aGB

1/2) is the WISHE parameter and d = m0CmDq / 2.
The parameters to vary are h–1 and L. The dispersion relation is solved nume-
rically using Newton’s method in Python.

4. Results

All the normal modes that come out of the dispersion relation (27) are now
plotted in figure 1 for the case in which CRI and WISHE are included. The
entropy profile parameters are H = 0.5 and De = 0.26 which corresponds to
the mean moist entropy difference, Ds0, of 40 Jkg–1K–1 and a minimum moist
entropy at half the height of the troposphere. The CAPE parameter g = 1
which corresponds to h–1 = 24 hours. The nondimensional F, F = W/k, that
the dispersion relation is solved for, is a complex number where the real part
of it corresponds to the nondimensional phase speed; if it is positive it shows
the eastward propagation, negative westward. The imaginary part of F leads
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Figure 1. Dimensional dispersion curves as a function of the planetary wavenumber l when
e = 0.2, L = –0.4, De = 0.26, H = 0.5 and h = 1/day. Solid lines represent convectively coupled
Kelvin modes, eastward and westward propagating; dashed lines represent fast Kelvin modes,
eastward and westward propagating and dotted line represents the eastward propagating slow
moisture mode. The upper panel shows the phase speeds of the modes, while the bottom panel
shows the growth rates.



to the growth rate of the mode as multiplied by k it gives nondimensional fre-
quency that can easily be converted to the real frequency w. It is called the
growth rate as the field variables’ of the model have the exponential depen-
dence on time: exp(–iwt) ; the positive imaginary part of the frequency gives
the exponential growth of the mode and negative the decay. In figures 1, 2, 3
the upper panel shows the dispersion curves of the dimensional phase speeds
and the bottom panel shows the growth rates. The phase speeds and the
growth rates of the modes are plotted as a function of the planetary wave-
number l, where l = 1 corresponds to a wavelength equal to the circumference
of the earth.

The modeled modes in figure 1 are the following:
1. The convectively coupled Kelvin modes, eastward and westward (note

that there is no analogue to the westward Kelvin wave in the real atmosphere)
that have the phase speeds of 17 ms–1. Their phase speed varies slightly with
the wavelength. The modes are damped regardless to the strong influence of
the diabatic effects, moisture and CAPE closure.

2. The free Kelvin modes or the fast Kelvin modes, eastward and westward
that have phase speeds of 48 ms–1 and decay at a very slow rate.

3. The slow moisture mode that moves eastward under the influence of
WISHE and is the only unstable mode.
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Figure 2. As in figure 1 but for the moisture mode as a function of planetary wavenumber l when
the CAPE parameter g = h / a is varied with four different values of buoyancy relaxation time h–1.



Figure 2 shows the moisture mode dependence on CAPE: as the buoyancy
relaxation time h–1 shortens, the mode propagates slower. The influence on
the growth rates is slight and only for the long wavelengths. The influence of
CAPE on the convectively coupled Kelvin wave is small (Fuchs and Marki,
2007) and is not shown here.

Figure 3 shows interesting influence of WISHE on moisture mode: it
makes it move eastward, while the growth rate is only slightly affected and
only for the long wavelengths. The convectively coupled Kelvin mode is not
affected much by WISHE.

The results compare well with Fuchs and Raymond (2007) and Fuchs and
Marki (2007). The convectively coupled Kelvin wave is stable what shows that
neither the CAPE closure nor the moisture closure are responsible for the
observed instability. Furthermore the model shows that neither closure is
responsible for the modeled phase speeds of the convectively coupled Kelvin
waves, which agrees with the observations, but is a sole consequence of the
system dynamics. The moisture mode is the addition to Fuchs and Marki
model and it shows that the CAPE closure has little influence on it.
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Figure 3. As in figure 1 but for the moisture mode and convectively coupled Kelvin mode with
WISHE effect (solid lines) and without it (dashed lines) when h = 1/day.



5. Conclusions

A simple linearized model for large-scale disturbances in the tropical non-
rotating atmosphere is presented. It includes cloud-radiation interactions (CRI),
wind-induced surface heat exchange (WISHE), gross moist stability, sensi-
tivity to CAPE and moist convection. The moist convection enters the model
through a parameterization of precipitation rate that is assumed to be directly
proportional to the precipitable water. This parameterization is called the
moisture closure and it is implemented with a relaxation time chosen to be one
day. The CAPE closure says that increased CAPE will indirectly cause increas-
ed precipitation via the decrease in midlevel tropospheric temperature.

The model is vertically resolved (Fuchs and Raymond, 2007) and assumes
a first baroclinic mode structure for the vertical heating profile. The other
variables’ profiles are calculated with a radiation boundary condition. The cal-
culated vertical velocity consists of two sinusoidal components with different
vertical wavelengths. One corresponds to the imposed heating profile or deep
convection component and the other to a shallow mode component that comes
from satisfying the boundary conditions. The latter determines the phase
speed of the convectively coupled Kelvin mode that agrees with observations
(Straub and Kiladis, 2002). As the gravity modes in a non-rotating atmosphere
map to Kelvin modes in the equatorial beta plane case, I identify the gravity
mode of this model to be the Kelvin mode. The model shows that all the
diabatic effects presented in the model have little or no influence on the phase
speed of the convectively coupled Kelvin waves nor are they responsible for
the observed instability of the Kelvin wave, perhaps due to lack of the con-
vective inhibition.

The slow moisture mode is the same mode as that of Fuchs and Raymond
(2002, 2007) and it comes out of the model as a consequence of the implement-
ed moisture closure. It propagates eastward under the influence of WISHE as
a direct result of the linear parameterization of WISHE in the mean ambient
easterly flow, and is stationary without it. It is unstable because of the CRI
effect and the gross moist instability. WISHE makes the moisture mode un-
stable only for a very long wavelengths. The disadvantage of the linear para-
meterization of WISHE is that the observations show an MJO-like prominent
in the regions of mean surface westerlies. When combined with nonlinearity it
can be speculated that the moisture mode could lead to the MJO as well as
other slow-moving disturbances such as easterly waves. The temperature per-
turbations for the moisture mode are weak (Fuchs and Raymond, 2007) which
suggests a relationship to the WTG mode (Sobel et al., 2001; Sobel and Bret-
herton, 2003). Neelin and Yu’s (1994) propagating deep convective mode, that
they compare to the moist Kelvin mode and the MJO, could perhaps also be
compared to the moisture mode as WISHE makes it unstable in a rotating
atmosphere without CRI and gross moist instability for planetary wavenum-
ber one (Fuchs and Raymond, 2005). The main difference between Neelin and
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Yu and this model is that they used the quasi-equilibrium assumption and
obtained a different dispersion relation.

The presented model simultaneously captures the convectively coupled
Kelvin waves of the observed phase speeds along with the slow moisture mode.
The moisture mode did not exist in the vertically resolved model which only
had the CAPE closure (Fuchs and Marki, 2007) and thus the moisture closure
enables us to capture more of the physics in a still simple analytical model.
The model further shows that no matter what diabatic closure is used, the
phase speed of the convectively coupled Kelvin wave is intact as it is the sole
consequence of the dynamics of the system. The damping of the convectively
coupled Kelvin wave in a model that implements the moisture closure, the
CAPE closure, CRI, WISHE and gross moist stability indicates that the full
physics of the interaction between Kelvin waves and convection is not captur-
ed, but it does show which mechanisms are not responsible for it.
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SA@ETAK

Analiti~ki model ekvatorijalnih valova uz konvekcijsku

raspolo`ivu potencijalnu energiju i vlagu

@eljka Fuchs

Na analiti~ki linearni model za dugoperiodi~ke valove implementirana je ovisnost
oborina o konvekcijskoj raspolo`ivoj potencijalnoj energiji i vlazi kojom se promatra
povezanost konvekcije i valova. Model tako|er uklju~uje me|udjelovanje oblaka i zra~e-
nja, osnovnu vla`nu nestabilnost i povr{insku izmjenu topline uzrokovanu vjetrom.
Model je primijenjen na ekvatorijalnoj ne-rotiraju}oj atmosferi i uklju~uje ovisnost
modeliranih polja po vertikali.

Te`inski valovi u ne-rotiraju}oj atmosferi su ekvivalentni Kelvinovim valovima u
rotiraju}oj atmosferi. Modelirani valovi su brzi stabilni adijabatski Kelvinovi valovi,
stabilni Kelvinovi valovi povezani s konvekcijom koji propagiraju faznom brzinom od
17 ms–1 i nestabilni vla`ni val male fazne brzine. Vla`ni val propagira radi povr{inske
izmjene topline uzrokovane vjetrom, a nestabilan je radi me|udjelovanja oblaka i
zra~enja i osnovne vla`ne nestabilnosti. Mogu}e je da vla`ni val predstavlja jedan od
mehanizama za tropske isto~ne valove i Madden-Julian oscilaciju.

Klju~ne rije~i: Kelvinovi valovi, vla`ni val
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