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The implementation of VGR-stress imaging technique, as a free surface
boundary condition, in a (2, 4) staggered grid P-SV wave finite difference (FD)
algorithm with a variable size of a grid cell is presented in this paper. VGR is
acronym for 'vertical grid-size reduction'. The qualitative and quantitative re-
sults confirmed that the effective thickness (ETH) of the first soil layer be-
come less by one-half of the vertical size of a grid cell than the assigned thick-
ness (ATH), if stress imaging technique is used as a free surface boundary
condition. The results of various numerical experiments revealed that the
stress imaging technique causes significant numerical dispersion of Rayleigh
waves and the VGR-stress imaging technique is efficient enough to avoid the
same. So, superiority associated with the VGR-stress imaging technique over
the well stress imaging technique is that it avoids both the significant numer-
ical dispersion of Rayleigh waves in homogeneous medium and the soil thick-
ness discrepancy. The maximum grid spacing ratio (ratio of largest to small-
est size of a grid cell) up to 6.0 did not affect the accuracy of FD algorithm
with a variable size of a grid cell. In case of a variable size of a grid cell, the re-
quired computational memory and time for a particular basin-edge model was
6.43 and 16.62 times lesser than that required in case of uniform grid.

Keywords: P-SV wave finite difference algorithm, fourth order spatial accu-
racy, maximum grid spacing ratio, VGR-stress imaging technique, stability
and grid dispersion

1. Introduction

The accuracy of finite difference (FD) method very much depends on the
efficiency of the implemented boundary condition at the free-surface. The
staggered grid FD method, proposed by Madariaga (1976), is one of the most
useful numerical methods to simulate the ground motion characteristics
(Virieux, 1984; 1986; Levander, 1988; Luo and Schuster, 1990; Graves, 1996;
Pitarka, 1999; Ohminato and Chouet; 1997; Narayan 2001a, 2001b; Moczo et
al., 2002; Narayan and Kumar, 2008). In the past, a free surface boundary con-
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dition has been achieved using either the stress imaging technique (Levander,
1988; Graves, 1996; Gottschammer and Olsen, 2001) or the vacuum formula-
tion (Boore, 1972; Zahradnik et al., 1993; Oprsal and Zahradnik, 2002). The
well known stress imaging technique was first proposed by Levender (1988) in
his P-SV wave 4th order spatially accurate staggered grid FD scheme. Graves
(1996) gave details of how to compute the required particle-velocity compo-
nents above the free surface for the stress imaging technique.

Incorporation of local site effects (particularly lateral geometrical varia-
tions and a very soft soil layer) in a simulation requires very dense grid FD
mesh (Jastram and Tessmer, 1994; Moczo et al., 1996; Pitarka, 1999; Oprsal
and Zahradnik, 2002; Narayan, 2005; Narayan and Ram, 2006; Narayan and
Singh, 2006). For example, in case of a very soft surficial soil layer, very small
size of a grid cell is required to avoid the numerical dispersion, which in turn
causes over sampling in a region where the seismic wave velocity is very large.
If uniform grid is used to discretise the model, the method becomes very
computationally expensive and time-consuming. In order to avoid this, a vari-
able size of a grid cell with continuous or discontinuous grid mesh has been
used in the past. The discontinuous grid mesh has been used in only one direc-
tion and it has not been fully generalized for treating the discontinuous grids
in all the directions (Jastram and Tessmer, 1994; Moczo et al., 1996; Aoi and
Fujiwara, 1999; Hayashi et al., 2001; Wang and Schuster, 2001). We have used
a continuous grid mesh with a variable size of a grid cell (Miyatake, 1980;
Moczo, 1989; Oprsal and Zahradnik, 1999; Pitarka, 1999; Oprsal and Zahrad-
nik, 2002; Narayan and Kumar, 2008).

Fourth order accurate FD scheme requires only 6 grid points per-shortest
wavelength to avoid the significant numerical dispersion of body waves. Bohlen
and Saenger (2006) reported the need of at least 17 grid points per shortest
wavelength to avoid the significant numerical dispersion of Rayleigh waves in
soft rock. The effect of position of the free surface, i.e. whether the normal or
shear stress components coincide with the free surface level, was studied by
Gottschammer and Olsen (2001) in the form of misfit between the analytical
and FD solution. It was inferred that the cause of error (misfit) may be due to
the numerical dispersion of Rayleigh waves. Kristek et al. (2002) reported de-
layed and earlier arrival of Rayleigh waves in a staggered grid with horizontal
and vertical component of particle displacement at the free surface, respectively.

Rodrigue (1993) used smaller size of a grid cell in vertical direction near
the free surface to avoid the numerical dispersion of Rayleigh wave. Similar
numerical experiment was done by Kristek et al. (2002) just to show that
stress imaging technique requires at least 10 grid points per-shortest wave-
length in order to avoid any significant numerical dispersion of Rayleigh wave.
But, the requirement of smaller time step will increase the computational
time. In case of VGR-stress imaging technique, the required stress and dis-
placement components above and below the free surface are computed explic-
itly and there is no need of reducing the time step in order to satisfy the stabil-
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ity condition (Narayan and Kumar, 2008). Kristek et al. (2002) have also
developed a technique known as adjusted FD (ADFD) approximations to ob-
tain a stress free boundary condition to avoid the significant dispersion of Ray-
leigh waves. The ADFD technique does not require the reduction of value of
time step. Another problem associated with the combination of staggered grid
and stress imaging technique is the thickness discrepancy of first soil layer as
was reported by Narayan and Kumar (2008) using a SH-wave FD algorithm.
This thickness discrepancy causes apparent faster movement of the body wave
multiples and larger value of predicted fundamental frequency of the soil de-
posit (Narayan and Kumar, 2008). The VGR-stress imaging technique is effi-
cient enough to avoid the soil thickness discrepancy. But, whether such type of
discrepancy will arise by using ADFD technique or not has not been studied.

So, in order to avoid the significant numerical dispersion of Rayleigh wave
and the thickness discrepancy of the first soil layer in case of a P-SV wave simu-
lation, we have developed a procedure for the implementation of the VGR-stress
imaging technique (proposed by Narayan and Kumar (2008) for (2, 4) SH-wave
staggered grid FD scheme) in a newly developed (2, 4) P-SV wave staggered grid
FD algorithm. VGR is acronym for 'vertical grid-size reduction'. The VGR-stress
imaging technique is based on the vertical grid-size reduction above the free
surface during the explicit computation of the free surface boundary condition.
So, there is no need of reducing the time step in order to satisfy the stability
condition. In this paper, we have studied in detail the performance of
VGR-stress imaging technique in avoiding the significant numerical dispersion
of Rayleigh waves in a homogeneous half-space and soil thickness discrepancy.
We have also conducted various numerical experiments to verify that the well
known stress imaging technique (Levander, 1988; Graves, 1996) suffers from
numerical dispersion of Rayleigh waves and the soil thickness discrepancy. The
maximum grid spacing ratio, stability and grid dispersion are also studied. Nu-
merical experiments are conducted to determine the saving of computational
memory and time in case of a variable size of a grid cell.

Both the sponge boundary condition (Israeli and Orszag, 1981; Dablain,
1986) and the A1 absorbing boundary condition of Clayton and Engquist
(1977), modified for the use with a variable size of a grid cell were imple-
mented on the model edges to avoid the edge reflections, as was used by
Kumar and Narayan (2008) for SH-wave. A time domain attenuation operator
based on an approximate technique is used for the modeling of spatially vary-
ing visco-elastic media (Graves, 1996; Kumar and Narayan, 2008). Dominant
frequency (f0) in the middle of the desired frequency band was chosen as refer-
ence frequency. An attenuation operator (A) used in the simulation and ap-
plied at a grid point (i, l) for duration t, the time step, is given below,

Ai,l = exp −












p Df t

Qi l
s

0

,
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where Qs: the quality factor for S-wave is used since it is difficult to distin-
guish the P- and S-waves in the finite difference time domain calculations. Qs

was taken as 10% of the value of S-wave velocity at the grid nodes.

2. (2, 4) P-SV wave FD algorithm with variable

size of a grid cell

The computer program developed is based on the second order temporal
and fourth order spatial (2, 4) FD approximation of elastodynamic P-SV wave
equations in the form of displacement-stress relations (Luo and Schuster,
1990; Ohminato and Chouet; 1997). In order to reduce the requirement of
computational memory displacement-stress relation is used which requires
stress components at only one time step in the memory where as in case of FD
program based on velocity-stress relation requires stress components at two
time steps in the memory.

2.1. (2, 4) FD approximation of P-SV wave equation

The elastodynamic wave equations for P-SV wave propagation in heteroge-
neous media is.
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Stress-strain relationship is given below
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where U and W are the components of particle displacement in the horizontal
and vertical directions. sxx, szz and sxz are the stress components, r is density,

l and m are the Lame’s constants.
∂
∂x

,
∂
∂z

and
∂
∂

2

2t
are the differential operators.

Figure 1a shows the staggering technique, where normal stress compo-
nents and the Lame’s parameters are defined at the nodes. The shear stress
component and the modulus of rigidity are defined at the centre of a grid cell.
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Horizontal and vertical components of the particle displacement and the den-
sity are defined at the midway between the two adjacent grid points in the hor-
izontal and vertical directions, respectively. In equations (1) – (5), the time de-
rivative was replaced by second order accurate central difference FD operator
(Boore, 1972; Dablain, 1986) and the space derivatives were replaced by a
fourth order staggered grid FD operator (Levander, 1988; Graves, 1996; Pitar-
ka, 1999; Moczo et al., 2002).
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Figure 1a. Staggering technique for P-SV wave modeling with fourth order spatial accuracy. Par-
ticle displacement and density are defined the midway between two adjacent grid points in the
horizontal and vertical directions. Normal stress components and Lame’s parameters are defined
at grid nodes and shear stress component and modulus of rigidity are defined at the centre of the
grid cell; and 1b. extended grid points above the free surface.
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The values of constants a and b are –1/24 and 9/8, respectively. The super-
script n refers to the time index and the subscript i and l are the spatial indi-
ces in the x and z directions, respectively. The time indices n + 1, n and n – 1
depict the updated, present and past wave fields, respectively. DXi,l and DZi,l

are the size of a grid cell at grid position i,l in x- and z-directions, respectively.
The effective values of the modulus of rigidity, defined at the centre of grid
have been obtained using a harmonic mean (Moczo et al., 2002).
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Similarly, effective values of density defined at the midway between the
two adjacent grid points have been obtained using an arithmetic mean (Moczo
et al., 2002).
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2.2. VGR – stress imaging technique

The medium parameters, displacement and stress components are not col-
located in a staggered grid FD scheme (Figure 1a). In case of heterogeneous
media, for example in vertical direction, the boundaries between two horizon-
tal layers do not coincide with the grid points, since shear stress component is
defined at the centre of a grid cell and horizontal and vertical components of
the particle displacement are defined at the midway between two adjacent grid
points. The computation of shear stress and displacement components require
the shear modulus and density at the same point where these are defined. The
shear modulus at the centre of a grid cell is obtained using equation (11) and
density at the midway between the two adjacent grid points has been com-
puted using equation (12). In a heterogeneous medium, the effective interface
between layers will be half a grid spacing displaced from the level determined
by grid points (where horizontal component of particle displacement is calcu-
lated).

We have defined the free surface collocated with grid nodes where horizon-
tal component of the particle displacement is located (Figure 1b). It means the
effective interface between the first soil layer and the vacuum/air will lay a
half of the vertical grid spacing above the free surface level where the horizon-
tal component of particle displacement is assigned. If the stress imaging is
used as the free surface boundary condition then the effective thickness (ETH)
of the first soil layer is lesser by one half of vertical grid-size than the assigned
thickness (ATH) for the horizontal component of particle displacement. On
the other hand, the ETH of the soil layer for the vertical component of particle
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displacement will be the same as the ATH. This thickness discrepancy (ATH–
ETH) of the first soil layer may cause considerable error in the computed fun-
damental frequency of the soil layer. Further, this thickness discrepancy may
cause apparently faster movement of the body wave multiples.

To avoid the thickness discrepancy of the first soil layer and the signifi-
cant numerical dispersion of Rayleigh wave in a homogeneous half-space, we
have used the VGR-stress imaging technique, where vertical size of a grid cell
above the free surface is reduced during the explicit computation of the free
surface boundary condition. If, the vertical size of a grid cell above the free
surface tends to zero, then virtually, the interface between the first soil layer
and the vacuum/air coincides with the free surface. So, effectively, we get the
ETH of the first soil layer same as the ATH. In the following paragraphs, de-
tails of how to compute the required displacement and stress components
above the free surface with the reduced vertical size of a grid cell above the
free surface is given.

To compute the particle displacement at the free surface and one-half as
well as one grid below the free surface, the stress components szz, sxx and sxz

will be required above the free surface (Figure 1b). To fulfill this requirement,
two grid nodes are extended in the vertical direction above the free surface.
The stress components szz and sxz above the free surface are obtained using
the well known stress imaging technique (Levander, 1988; Graves, 1996)

(szz)i, l=0 =0 (13)

(szz)i, l–1 = –(szz)i, l+1 (14)
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In order to introduce the effects of reduction of vertical size of a grid cell
above the free surface, let us assume that vertical size of a grid cell above the
free surface is reduced by a factor K as compared to the vertical size of a grid

cell just below the free surface (where K =
D

D

Z below the free surface

Z above the free surface
is the ver-

tical size of a grid cell reduction factor (VGRF)). During the computation of
normal stresses sxx and szz at l = 0 and l + 1, just at the free surface and one
grid size below the free surface, the vertical component of particle displace-

ment W
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and W
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2

will be required above the free surface (Figure 1b). It

was assumed that the Lame’s parameters are constant across the free surface.

First, vertical component of particle displacement W
i l, − 1

2

was obtained using
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equations (9) and (13). We have used second order approximation of equation
(9) as suggested by Graves (1996).
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During the computation of shear stress sxz at l + 1/2 just half grid size be-

low the free surface, the horizontal component of particle displacement U
i l+ −1

2
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will be required one grid point above the free surface (Figure 1b). The horizon-
tal component of particle displacement U
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was obtained using equations
(10) and (15).
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Similarly, vertical component of particle displacement W
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surface was obtained using equations (9), (14), (17) and (18).
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Further, it was assumed that in the VGR-stress imaging technique, the
stress components at l + 1/2, l + 1 or l + 3/2 first linearly reduces to zero up to
the free surface and then linearly increases up to l – 1/2, l – 1 or l – 3/2 above
the free surface. It means, under this assumption, if the size of a grid cell
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above the free surface is reduced by K then the stress components above the
free surface respectively at l – 1/2, l – 1 or l – 3/2 will be.
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2 (20)
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The required displacement components above the free surface to imple-
ment the free surface boundary condition using the stress imaging technique
can be obtained using K = 1 in equations (17), (18) and (19).

3. Validation of (2, 4) P-SV wave FD scheme

3.1. Numerical grid dispersion and stability

It is well documented that at least 6 grid points per-shortest wavelength
are required in case of a fourth order accuracy to avoid significant numerical
dispersion of body waves (Levander, 1988; Moczo et. al., 2000; Narayan and
Kumar, 2008). Although, there is no need to study the numerical dispersion
but just to verify the performance of new FD algorithm, seismic response of a
homogeneous model were computed using different number of grid points
per-shortest wavelength. The P-wave and S-wave velocities, quality factor and
density for the homogeneous model were taken as 3 117.7 m s–1, 1 800 m s–1,
180 and 2.5 g cm–3, respectively. Ricker wavelet with 1.0 Hz dominant fre-
quency and upper frequency limit of 3.0 Hz was used as an excitation function.
The model was discretised using a square grid of size 50 m, 100 m, 120 m and
150 m, with effectively 12.0, 6.0, 5.0 and 4.0 grid points per-shortest wave-
length, respectively. Seismic responses were computed at an epicentral dis-
tance of 24.0 km using source at a focal depth of 12.0 km. Seismic response
computed using 12 grid points per-shortest wavelength is used as a reference
one assuming that it may be numerical dispersion free for a distance travelled
equivalent to 15 dominant wavelength. Figure 2 shows the comparison of com-
puted seismic response using 4, 5 and 6 grid points per-shortest wavelength
(dotted line) with the reference one (solid line). P-wave, SV-wave converted in
to P-wave and SV-wave are the first, second and third arrivals, respectively.
Analysis of Figure 2 reveals that SV-wave converted P-wave and SV-wave have
suffered significant dispersion in cases where there was only 4 and 5 grid point
per-shortest wavelength. But, there is only minor numerical dispersion in FD
response when there was 6 grid point per-shortest wavelength. Numerical dis-
persion of P-wave is all most negligible in responses where there was 5–6 grid
point per-shortest wavelength. It can be inferred that numerical dispersion
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may be negligible for a distance travelled equivalent to 10–12 dominant wave-
length using 6 grid points per-shorted wavelength.

The stability condition for this new (2, 4) P-SV wave FD algorithm with
variable size of a grid cell was obtained based on various iterative numerical
experiments i.e. taking different time steps Dt for the simulation and then an-
alyzing whether error increases with the simulation time step (Dt was varied
in a very small step near the upper limit of the stability). Models with large ve-
locity contrast (having both the lateral and vertical variations) and grid spac-
ing ratio were considered for the numerical experiments. It was finally con-
cluded that the scheme is stable for both the homogeneous and heterogeneous
models, if the following stability condition is locally satisfied.

V t

x z

P D

D Dmin( , )
.≤ 071 (23)

where VP is the P-wave velocity. x and z are the grid spacing in the horizontal
and vertical directions, respectively. Moczo et al. (2000) have given a stability
condition exclusively for P- and S-waves with fourth order spatial accuracy for
a homogeneous medium.

V t

x or z

D

D D
≤

6

7 2
(24)

3.2. Maximum grid spacing ratio

Simulation of a model containing a lateral geometrical variations or a very
soft soil with uniform grid requires very large computational memory and
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Figure 2. Comparison of computed responses of a homogeneous half-space model using different
number of grid points per shortest wavelength (G/W) with the response computed using 12 grid
points per-shorted wavelength.



time. In order to reduce the same, we have used a continuous grid mesh with a
variable size of a grid cell (Miyatake, 1980; Moczo, 1989; Oprsal and Zahradnik,
1999; Pitarka, 1999; Oprsal and Zahradnik, 2002; Narayan, 2005; Narayan
and Ram, 2006). Two additional grid cells were created to store the values of
the size of a grid cell since a variable size of a grid cell FD scheme requires the
information regarding the size of a grid cell in both the directions at each node
for the computation of spatial derivatives.

To find out the maximum grid spacing ratio (ratio of largest to smallest
size of a grid cell) up to which (2, 4) P-SV wave algorithm is accurate, the re-
sponses of same homogeneous model (21.1 km × 13.8 km) were computed.
Model was discretised with larger size of a grid cell as 100 m and different
smaller size of a grid cell as 25 m, 20 m, 16.66 m, 16.0 m and 15.0 m. So, we
have larger to smaller grid spacing ratio as 1:4, 1:5, 1:6, 1:6.25 and 1:6.66. The
horizontal dimension of the grid from left edge of the model was 100 m up to
9.0 km and thereafter variable (25 m, 20 m, 16.67 m, 16.0 m and 15.0 m). In
the vertical direction, the size of a grid cell was variable (25 m, 20 m, 16.67 m,
16.0 m and 15.0 m) up to a depth of 4.8 km and 100 m thereafter. Seismic re-
sponses were computed at 13.6 km epicentral distance using source at a focal
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Figure 3. Comparison of computed responses of a homogeneous half-space model using different
grid spacing ratio with the response computed using uniform grid.



depth of 8.8 km. The seismic response using uniform grid size of 100 m was
also computed for the comparison. Figure 3 shows a comparison of computed
responses using different grid spacing ratio (dotted line) with the response
computed using uniform grid (solid line). It seems that in case of grid spacing
ratio ≥ 6.25, a high frequency noised has been generated. Further, there is nu-
merical dispersion in response computed using grid spacing ratio equal to
6.66. A good resemblance of responses for grid spacing ratios up to 6.0 with the
response computed using uniform grid reveals that the maximum grid spacing
ratio up to of the order of 6.0 can be used.

4. Performance of VGR-stress imaging technique

4.1. Soil thickness discrepancy

We have conducted numerical experiments to quantify the soil thickness
discrepancy associated with the stress imaging technique as well as to show
the effectiveness of the VGR-stress imaging technique in avoiding the same.
Seismic response of a model with a soft soil layer over the half space was com-
puted using different VGRF. The P-wave & S-wave velocities and densities were
taken as 1,200 m ⋅ s–1, 360.0 m ⋅ s–1 and 2.0 g ⋅ cm–3 for soil and 3 117.7 m ⋅ s–1,
1 800.0 m ⋅ s–1 and 2.5 g ⋅ cm–3 for half-space. During the discretisation of the
model, the horizontal dimension of the grid from left to right was 20 m and in
vertical direction it was 20 m up to depth of 0.5 km and 100 m thereafter. Seis-
mic responses of the model with soil thickness 200 m were computed at an
epicentral distance of 6.0 km using a point source at a depth of 6.5 km. A com-
parison of seismic response with VGRF 1.0, 2.0, 4.0 and ∞ (∞ means 107; very
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Figure 4. Comparison of computed FD response of a soil layer using stress imaging technique
(VGRF=1) VGR-stress imaging technique with different VGRF.



large value) is shown in Figure 4. There is effect of used VGRF values on the
arrival times of body waves and multiples. There is no change of arrival times
of body waves in the vertical component since it is defined at one half of the
size of a grid cell below the free surface. The multiples are moving faster in
both the components of particle displacement when VGRF is smaller (note
VGRF = 1.0 is equivalent to the use of the stress imaging technique). The
multiples are moving faster in the vertical component also due to the faster
movement of multiples in the horizontal component. For example, the multi-
ples shown with solid line in Figure 4 is the fastest one, since in this case ETH
of soil layer is 190 m (ATH – ETH = 10.0 m). The amplitude of multiples are
unaffected by the used VGRF values. Analysis of Figure 4 confirms that the
thickness discrepancy occurs for the first soil layer if stress imaging technique
is used as the free surface boundary condition in case of horizontal component
for the used discretisation scheme.

In order to show the above conclusion in a quantitative way and to quan-
tify the error caused by the stress imaging technique, 1D seismic response of
the same soil layer having thickness 180 m and different VGRF were com-
puted using a source dominated by P-wave (P-wave dominated source was gen-
erated by using only normal stresses as source excitation function). The reso-
nance frequency of soil for P-wave corresponding to different VGRF were
computed using the ratio of spectra of vertical component computed with and
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Figure 5. A comparison of variation of fundamental frequency and higher modes of resonance
frequency of soil layer with VGRF in case of source dominated by P-wave (using vertical compo-
nent) and S-wave (using horizontal component), respectively. (Note: considered thickness of soil
in Figures 5a and 5b were 180 m and 120m, respectively).



without soil layer. Response in vertical component was used since amplitude in
horizontal component was negligible. Figure 5a shows that there is no change
in resonance frequency of soil with VGRF used since there is no soil thickness
discrepancy in case of vertical component. The spectral ratio is not smooth due
to presence of SV-wave in the computed response.

Table 1. A comparison of fundamental resonance frequency computed analytically using relation

F0ATH = VS/4(ATH) and obtained numerically for different VGRF and the % error.

F0ATH

(Hz)

VGFR = ∞ VGRF = 4 VGRF = 2 VGRF = 1

F0FD

(Hz)
% error

F0FD

(Hz)
% error

F0FD

(Hz)
% error

F0FD

(Hz)
% error

0.75 0.78 4.0 0.84 12.0 0.86 14.6 0.88 17.3

In the next numerical experiment, we computed 1D seismic response of
the same soil layer with thickness 120 m and different VGRF using S-wave
dominated source (source generated using shear stress 'sx,z' as source excita-
tion function). The resonance frequencies (fundamental and higher modes) of
the soil layer using horizontal component were computed for different VGRF.
Figure 5b shows that there is change in the resonance frequency of soil layer
with VGRF used. The resonance frequency is increasing with the decrease of
VGRF. A comparison of the empirically computed resonance frequency F0ATH

using assigned thickness (ATH) (F0ATH = VS/(4 ⋅ATH)) with the numerically
obtained resonance frequency F0FD and the % error for different VGRF is
given in Table 1. The error between F0ATH and F0FD is decreasing with increase
of VGRF. Maximum % error of the order of 17.3 % was obtained in case of the
stress imaging technique (VGRF = 1.0) and minimum of the order of 4.0 % in
case of the VGR-stress imaging technique (VGRF = 107). Theoretically, error
should be 0.0 % for VGRF = 107. The observed error may be due to the reso-
nance of P-wave at higher frequency. On the basis of analysis of Table 1, we
can infer that the virtual reduction of the size of a grid cell above the free sur-
face is almost linearly proportional to the used VGRF. The results support the
conclusion in a quantitative way that the stress imaging technique suffers
with the soil thickness discrepancy. The effective thickness of first soil layer
becomes less by one half of the vertical size of a grid cell if stress imaging tech-
nique is used as a free surface boundary condition and the VGR-stress imaging
technique is efficient enough to avoid the same (Narayan and Kumar, 2008).

4.2. Numerical dispersion of body wave propagating

along the free surface

In order to study the performance of the VGR-stress imaging technique in
avoiding the numerical dispersion of body wave propagation along the free

GEOFIZIKA, VOL. 27, NO. 1, 2010, 45–68 59



surface, we have first computed the response of a homogeneous half-space
model using both stress imaging technique and VGR-stress imaging tech-
nique, keeping source at 6.0 km depth. The model parameters used during the
simulation were the same as used earlier for the homogeneous half-space
model. Responses were computed at five epicentral distances (14.0 km, 16.0
km, 18.0 km, 20.0 km and 22.0 km). Figure 6a shows the comparison of com-
puted responses using the VGR-stress imaging technique (solid line) and the
stress imaging technique (dotted line). Figure 6a clearly depicts P-wave as first
arrival, evanescent P-wave caused by the critically incident SV-wave and prop-
agating along the free surface as a second arrival and SV-wave as a third ar-
rival. Rayleigh waves have not been generated for the source-receiver geome-
try and spectral content of the source-time function used in our computations.
There is excellent matching of arrival times of evanescent P-wave propagating
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Figures 6a and 6b. Comparison of computed FD responses using stress imaging technique (dot-
ted line) and VGR-stress imaging technique (solid line) at different epicentral distances using a
deep source and a shallow source, respectively.



along the free surface in both the cases. We conclude that there is no numeri-
cal dispersion of body waves propagating along the free surface in case of
stress imaging technique.

4.3. Numerical dispersion of Rayleigh wave

In order to show the efficacy of VGR-stress imaging technique to avoid the
significant numerical dispersion of R-wave, seismic responses of a homoge-
neous half-space model were computed using both the stress imaging tech-
nique and the VGR-stress imaging technique. Response was computed at four
epicentral distances 9.0 km, 18.0 km, 27.0 km and 36.0 km using source at a
focal depth of 2.0 km. Figure 6b shows the comparison of computed responses
using the stress imaging technique (dotted line) and the VGR-stress imaging
technique (solid line). The first arrival in the response is the P-wave whose
amplitude is very small compared to the other two seismic phases. The P-wave
is only visible in trace recorded at an epicentral distance of 9 km. The second
arrival is the evanescent P-wave caused by the SV-wave incident at the free
surface at critical angle. The evanescent P-wave is propagating along the free
surface. The third arrival is the Rayleigh wave caused by mainly incident
SV-wave since source was dominated by SV-wave. The arrival time of evanes-
cent P-wave is same at different epicentral distances in both the stress imag-
ing technique and the VGR-stress imaging technique. There is dissimilarity in
arrival time of peak amplitude Rayleigh wave (third arrival). The arrival time
of peak amplitude Rayleigh wave in case of stress imaging technique (dotted
line) is greater than that in case of VGR-stress imaging technique (solid line)
and this difference in arrival time is increasing with the distance travelled. So,
it can be inferred that the increase of difference in arrival time of peak ampli-
tude Rayleigh wave with the distance travelled may be due to numerical dis-
persion of Rayleigh wave in the computed response using stress imaging tech-
nique.

In order to verify that there is no significant numerical dispersion of Ray-
leigh wave in the case of VGR-stress imaging technique, seismic responses
were computed using different VGRF values. Figure 7a shows the response
computed at 27 km epicentral distance using different VGRF. Again, there is
no effect of VGRF on the arrival time of the evanescent P-wave. But, the travel
time of peak amplitude Rayleigh is highly affected by the value of VGRF used.
There is reduction of arrival time (dispersion) of peak amplitude Rayleigh
wave with the increase of VGRF. So, it can be inferred that delay in arrival
time of peak amplitude Rayleigh wave is largest in case of response computed
using stress imaging technique (VGRF = 1) and it is theoretically negligible in
case of VGRF = ∞ (107). The decrease in delay of arrival time of peak ampli-
tude Rayleigh wave is proportional to the VGRF used. The numerical disper-
sion is also causing change of wavelet shape.
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In order to further confirm that VGR-stress imaging technique does not
cause significant numerical dispersion of Rayleigh wave, seismic responses
computed at epicentral distances of 18.0 km and 36.0 km using stress imaging
technique (VGRF = 1) and VGR-stress imaging technique (VGRF = 107) were
used to plot the particle motion trajectory during Rayleigh wave propagation.
The seismic response in time windows of 10–14 sec and 22–26 sec correspond-
ing to epicentral distances of 18 km and 36 km were used to plot the elliptical
path of the particle motion. Figures 7b and c depict the comparative plot of the
particle motion trajectory at epicentral distance of 18 km (solid line) and 36
km (dotted line) corresponding to stress imaging technique and VGR-stress
imaging technique, respectively. The shape of the particle motion trajectory in
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Figures 7a-7c. Comparison of computed response at an epicentral distance of 27.0 km using dif-
ferent VGRF; and shape of the particle motion trajectory at epicentral distances of 18 km (solid
line) and 36 km (dotted line) using (b) stress imaging technique) and (c) VGR-stress imaging tech-
nique for VGRF = 107 (Note: a.u. means arbitrary unit).



case of stress imaging technique is not preserved since the later part of trajec-
tory corresponding to 36 km epicentral distance (dotted line) is touching to the
trajectory corresponding to 18 km epicentral distance (solid line). This may be
due to the increased amplitude of Rayleigh wave in later part of the wavelet
and change of wavelet shape due to the numerical dispersion. On the other
hand, the preserved shape of the particle motion trajectory with the distance
travelled in case of the VGR-stress imaging technique (Figure 7c) further con-
firms that VGR-tress imaging technique is free from any significant numerical
dispersion of Rayleigh wave.

5. Saving of computational time and memory

In order to compare the requirements of computational time and memory
between the FD numerical schemes using a variable and fixed grid size step,
respectively, we calculated synthetic seismograms for a shallow sedimentary
basin (Figure 8a).

The parameters for the soil in basin and the bedrock were the same as
used earlier. The size of considered basin-edge model was 14.0 km × 13.14 km
and the basin-edge slope was 90°. The basin-edge was at a distance of 8.0 km
from the left edge of the model. The soil thickness in the basin was taken as
140 m and its right edge was extending infinitely. Source was kept at a depth
of 9.14 km and at a distance of 4.0 km from the left edge of the model. The
width of sponge zone was 2.0 km in both the homogeneous and variable grid
size models, which is essential to avoid the edge reflections. In case of uniform
grid-size mesh, the size of a grid cell was taken as 20 m in both the direction.
In case of a variable grid-size mesh, horizontal size of a grid cell was 100 m up
to 8.0 km from left edge of the model, it was 20 m between 8.0 km and 12 km
and 100 m thereafter. In the vertical direction, the size of a grid cell was 20 m
up to a depth of 140 m and 100 m thereafter. The seismic response with time
step 0.004 s was computed on a HP-Workstation (xw6000 model) with 4.0 GB
RAM and 2.8 GHz processor’s speed for a duration of 35 seconds. Seismic re-
sponses were computed at 30 equidistant (100 m apart) receiver points extend-
ing from 100 m left of edge to 2.8 km inside the basin. Figures 8 b & c show the
horizontal components of computed seismic responses of basin-edge model us-
ing uniform grid and a variable size of a grid cell, respectively.

The required numbers of grid points in the x- and z-directions in both the
discretisation schemes are given in Table 2. The number of numerical cells re-
quired to keep the different parameters in the computational memory in case
of the uniform grid and variable size of a grid cell were 12 and 14, respectively.
Two extra numerical cells were required in case of variable size of a grid cell to
keep the information regarding the size of a grid cell in two directions. The
common 12 numerical cells were one each for two Lame’s parameters, density,
velocity, quality factor, three stress components and two components of dis-
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placement at two time steps. The total number of required nodes and the com-
putational times in both the discretisation schemes are also given in Table 2.
The analysis of Table 2 reflects 9.43 times saving of computational memory
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Figures 8a to 8c. shows the basin-edge model and b & c show the horizontal components of the
responses computed using uniform grid and a variable size of a grid cell.



and 16.6 times saving of computational time in case of variable size of a grid
cell as compared with the uniform grid.

Table 2. shows the number of grid points needed in the x-direction (IX) and z-direction (JZ) to

discretise the basin-edge model with uniform size of a grid cell and variable size of a grid cell. NH

and NV are the number of grid nodes and TH and TV are the computational time for uniform the

size of a grid cell and variable the size of a grid cell discretisation schemes, respectively.

Uniform size of a grid cell Variable size of a grid cell Ratio

No. of grids No. of nodes

NH = IX⋅JZ⋅12

Comp.
time TH

(sec)

No. of grids No. of nodes

NV = IX⋅JZ⋅14

Comp.
time TV

(sec)
NH/NV TH/TV

IX JZ IX JZ

700 660 5 544 000 20.77 300 140 588 000 1.25 9.43 16.62

6. Discussion and conclusions

A new (2, 4) staggered grid FD algorithm with variable size of a grid cell
and VGR-stress imaging technique as the free surface boundary condition is
presented for the simulation of P-SV wave propagation in a heterogeneous me-
dium. The qualitative and quantitative results of numerical experiments con-
firmed that FD algorithm with stress imaging technique as the free surface
boundary condition suffers from soil thickness discrepancy while VGR-stress
imaging technique is not affected by this effect. Similar conclusion was also
drawn by Narayan and Kumar (2008) using (2,4) staggered grid SH-wave FD
algorithm. The analysis of simulated results revealed that maximum grid
spacing ratio of the order of 6.0 can be used for numerical simulation. In case
of a variable size of a grid cell, the required computational memory and time
for a particular basin-edge model was 6.43 and 16.62 times lesser than that re-
quired in case of uniform grid.

The analysis of simulated results confirmed that the use of stress imaging
technique as a free surface boundary condition causes significant numerical
dispersion of Rayleigh waves. Similar conclusion was also drawn by Rodrigues
(1993) and Kristek et al. (2002). Based on various simulated results, we con-
clude that VGR-stress imaging technique is efficient enough to avoid signifi-
cant numerical dispersion of Rayleigh wave, arising due to use of image of
stress components across the free surface. The preserved shape of the ellipti-
cal particle motion trajectory with the travelled distance further supports that
the VGR-stress imaging technique does not suffer with the significant numeri-
cal dispersion of Rayleigh wave. Further, in VGR-stress imaging technique re-
quired stress and displacement components above and below the free surface
are computed explicitly so there is no need of reducing the time step in order
to satisfy the stability condition. Finally, we conclude that the VGR-stress im-
aging technique is better than the well known stress imaging technique (Le-
vander, 1988; Graves, 1996).
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SA@ETAK

P-SV valni algoritam kona~nih razlika ~etvrtog reda

to~nosti na razmaknutoj mre`i s varijabilnom veli~inom mre`e

i VGR-metodom dijagnostike napetosti

J. P. Narayan i Sanjay Kumar

Prikazana je primjena VGR-metode dijagnostike napetosti (engl. VGR-stress imaging

technique), kao slobodnog rubnog uvjeta na povr{ini, u (2,4) P-SV valnom algoritmu
kona~nih razlika (engl. finite difference, FD) na razmaknutoj mre`i s varijabilnom
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veli~inom mre`ne }elije. VGR je akronim za smanjenje vertikalne veli~ine mre`e (engl.
vertical grid-size reduction). Kvalitativni i kvantitativni rezultati potvrdili su da efektiv-
na debljina (engl. effective thickness, ETH) prvog sloja tla postaje za polovinu vertikal-
nog koraka mre`e manja od pridijeljene debljine (engl. assigned thickness, ATH), ukoli-
ko se metoda dijagnostike napetosti koristi kao slobodan rubni uvjet na povr{ini.
Rezultati razli~itih numeri~kih eksperimenata otkrili su da uobi~ajeno kori{tena metoda
dijagnostike naprezanja dovodi do zna~ajne numeri~ke disperzije Rayleighevih valova,
dok je VGR-metoda dovoljno u~inkovita da to izbjegne. Nadmo} VGR-metode nad do-
bro poznatom metodom dijagnostike napetosti se stoga o~ituje u izbjegavanju zna~ajne
numeri~ke disperzije Rayleighevih valova u homogenom sredstvu, kao i manjem odstu-
panju u debljini sloja tla. Maksimalni omjer koraka mre`e (tj. omjer najve}e prema naj-
manjoj veli~ini mre`ne }elije) do 6.0 nije utjecao na to~nost FD algoritma s varijabilnom
veli~inom mre`ne }elije. U slu~aju varijabilne mre`e, ra~unalna memorija i vrijeme ra-
~unanja potrebni za odre|eni model ruba bazena bili su 6.43, odnosno 16.62 puta manji
nego u slu~aju jednolike mre`e.

Klju~ne rije~i: valni algoritam kona~nih razlika, ~etvrti red to~nosti u prostoru, maksi-
malni omjer koraka mre`e, VGR-metoda dijagnostike napetosti, stabilnost i disperzija
mre`e (numeri~ka disperzija)
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