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The structure of the Earth’s crust has been determined at thr ee tempo-
rary seismic stations in Istra (Croatia) installed as a part of the passive seis-
mic experiment ALPASS-DIPS ( Alpine L ithosphere and Upper Mantle PAS -
sive Seismic Monitoring – DI narides-Pannonian Segment). The stations were
located at the north-eastern edge of the Adriatic microplat e. The knowledge
of the crustal structure under Istra will help the understan ding of the tec-
tonic evolution within the broader region of the contact bet ween Adria and
Eurasia. Teleseismic data recorded at three-component sta tions were ana-
lyzed using the P receiver functions method, which allows detecting seismic
discontinuities within the crust and upper mantle below the stations. To de-
termine more detailed crustal structure, we have done 1-D fo rward modelling
of receiver functions. The results of modelling are the S-wave velocity models
of the crust beneath the stations. Calculated receiver func tions showed three
converted phases in the first 5 s of delay time, thus suggesti ng three seismic
discontinuities in the crust, that is, discontinuity in the shallowest part of the
upper crust, intracrustal discontinuity, and the Mohorovi ~i} discontinuity. A
forward modelling approach at all three stations showed a sh allow high-veloc -
ity zone observed at a depth between 2 and 8 km. This zone may pr obably be
related to an anhydrite series with dolomite alternations c haracterised by
high seismic velocity. Intracrustal discontinuity is defi ned at a depth between
18 and 21 km. Models of the shear velocity at the three station s show a de-
creasing of the Moho depth from 43 km at the northern Istra to 3 7 km at the
south-eastern part of Istra.
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1. Introduction

The current article is based on the results of the recent passive sei smic ex-
periment ALPASS-DIPS ( Alpine L ithosphere and Upper Mantle PAS sive
Seismic Monitoring – DI narides-Pannonian Segment), that was part of the
larger ALPASS experiment (Brückl et al., 2005). The project ALPASS -DIPS
covered Istra peninsula, wide area of NW Dinarides, a transitiona l zone to-
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wards the Pannonian basin, and the SW part of the Pannonian ba sin (Fig. 1).
The main tectonic feature in this area is the boundary between the Ad riatic
microplate and the European plate. The aim of the ALPASS-DIPS p roject was
to apply passive seismic methodology in exploring the lithosph eric structures
related to this zone. The study area was covered by fifteen temporary sei smic
stations (Fig. 1). Most of the seismic stations were deployed alo ng the profile
stretching from Istra to the Drava River at the Hungarian-Croa tian border.
We will focus here on three stations deployed in Istra and named Cro _01,
Cro_13, and Cro_14 (Fig. 1). Teleseismic data recorded at temporar y seismic
stations during 15 months will be used to characterize the stru cture of the
crust beneath Istra and the depth of Mohorovi~i} discontinuity , or Moho in ab -
breviated form (Mohorovi~i}, 1910).

Lithospheric velocity structure of the study area has been recently imaged
to a depth of about 50 km as a part of a wide-angle refraction and ref lection ex-
periment ALP 2002 (Brückl et al., 2003). The study area in Istra is crossed in
the N–S direction by the termination of the Alp01 profile (Fig. 1). It is about a
600-km-long profile that crosses the Alpine orogen and the con tact between
the European plate and the Adriatic microplate. The resulting v elocity model
along the Alp01 profile shows that the European Moho dips to th e south at a
maximum depth of 47 km below the transition from the Eastern to th e South-
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Figure 1 . Locations of temporary seismic stations in Istra (Cro_01, Cro_13 and Cro_14) are de-
noted with red circles. The black dots are the other temporar y stations deployed within the
ALPASS-DIPS experiment. Alp01 and Alp07 are active source r efraction and wide-angle reflection
(WAR/R) profiles from the ALP 2002 project.



ern Alps (Brückl et al., 2007). At the southern end of the profile ( Istra), there
is a very sharp shallowing of the Moho with a decrease in depth from 40 to
28 km. The upper crust under the External Dinarides and the Adriat ic fore-
land is characterised by a high-velocity layer, with velocities of about 6.2 km/s
near surface and about 6.4 km/s at a depth of 6 km. The termination of the
Alp01 profile is crossed by the beginning of the Alp07 profile, a lso from the
ALP 2002 project (Fig. 1). It stretches in the SW–NE direction, fr om the Istra
peninsula to the SW part of the Pannonian basin. The Mohorovi~ i} discontinu -
ity at the SW end of the profile is at a depth of 28 km with increasin g depth
under the Dinarides ([umanovac et al., 2009). The velocity in the upper crust
at the SW end of the Alp07 profile also indicates a high-velocity layer to a
depth of about 5 km.

A recent receiver function study in the External Dinarides (Stip~evi } et al.,
2011) suggests that the Moho depth is in the range from around 40 km for the
Northern Adriatic to more than 55 km for the central part of the E xternal
Dinarides. A map of the Moho compiled from a receiver function stud y to-
gether with results from Grad et al. (2009) shows the Moho depth in I stra
from 40 km in the northern part to about 33 km at the southern end. T his is
broadly in line with other maps of the Moho depth in Europe (e.g. Z iegler and
Dézes, 2006; Tesauro et al., 2008).

In this article, crustal structure is derived from a passive seis mic experi-
ment. The teleseismic events recorded at three temporary stations have been
analysed by the receiver function method. This method gives the estim ate of
the major velocity discontinuities by Ps conversions. The 1-D forward model-
ling of receiver functions was used to construct crustal shear-vel ocity models
under the three stations in Istra.

2. Geological setting

The temporary seismic stations (Cro_01, Cro_13, and Cro_14) a re located
at the boundary between the Adriatic microplate and the European plate in
the region of Northern Adriatic (Fig. 2). The area is characteris ed by active
convergence and the movement of the Adriatic microplate to the no rth-north -
east (Grenerczy et al., 2005), with the counter-clockwise rotati on around the
pole that is located in the western Alps (Anderson and Jackson, 19 87; Weber
et al., 2010). As a result of pushing by the African plate, the Adr iatic micropla -
te is thrust into the European continent, thus causing the Eart h’s crust defor -
mation concentrated in the Alpine-Dinaric orogen. Until the 90s , the Adriatic
microplate was considered unique, with no significant seismic a ctivity (Ander -
son and Jackson, 1987). The present-day kinematics and deformat ion are rea-
sonably well known because of the large number of GPS measurements c over-
ing the area of the Adriatic microplate. According to results ba sed on GPS
measurements (Oldow et al., 2002) and seismic activity in the centr al part of
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the Adriatic Sea, it is assumed that the Adriatic microplate is not unique, but
consists of two segments: northern and southern (Console et al., 1 993; Ivan~i}
et al., 2006). The boundary between them extends approximately from G arga-
no, on the southeast coast of Italy, to Dubrovnik (Westaway, 19 90). The south -
ern block has the opposite rotation to the northern part (Faval i et al., 1990;
D’Agostino et al., 2008). Recent studies in this area based on deep refr action
and wide angle-reflection experiment support the idea of subductio n of the Eu -
ropean plate below the Adriatic microplate in the area of the Sou thern Alps
(Brückl et al., 2007). Consistent with this concept is also a tom ographic model
of the upper mantle under the Eastern Alps and the transition to t he Panno-
nian realm based on the ALPASS teleseismic experiment (Mitterbauer et al .,
2011). At the same time, underthrusting of the Adriatic microp late beneath
the Dinarides is substantiated by results of the deep refraction exp eriment
([umanovac et al., 2009) and gravity modelling ([umanovac, 20 10).

The Istra peninsula, in which all the three stations are located , belongs to
the northwestern part of the former Adriatic carbonate platfor m (AdCP),
which existed from the Middle Permian to Eocene, with the thickness of car-
bonate sediments greater than 3500 m (Vlahovi} et al., 2005). Eocen e forami -
niferal limestones, transitional beds, and flysch lie on the car bonate platform
sediments. According to the geological map, station Cro_13 is l ocated on Eoce-

250 J. ORE[KOVI] ET AL. : CRUSTAL STRUCTURE BENEATH ISTRA PENINSULA

Figure 2. Geology and tectonics in the wider area. Red circles indicat e temporary seismic stations
in Istra and blue lines are two refraction and wide-angle ref lection (WAR/R) profiles from the
ALP 2002 experiment (generalized after Schmid et al., 2008) .



ne sandstones and marls, whereas stations Cro_01 and Cro_14 are situated on
Upper Cretaceous limestones (Geological Map of the Republic of Croa tia,
2009).

3. Data and method of analysis

The teleseismic events used in this study have been collected from the pa s-
sive seismic experiment ALPASS-DIPS. The APASS-DIPS project con sisted of
fifteen temporary seismic stations; but for this study, we have s elected three
stations located in Istra: Cro_01, Cro_13, and Cro_14 (Fig. 1 ). The earth -
quakes were recorded on three-component short-period seismic statio ns. The
seismometers used were 2 Hz MARK L4-1D and ELGI-DAS data logger. The
data were recorded during the period of 15 months, from November 200 5 to
January 2007. From recorded earthquakes, we have selected 34 teleseism ic
events within epicentral distance between 30° and 90° (Fig. 3) and wi th a mag-
nitude greater than 5.5. For the receiver function analysis, we ha d to remove
data with low signal-to-noise ratio; and finally, sixteen event s per station were
used. Most of the selected events are located to the north and east from the
stations, with back azimuths between 0° and 100° (Fig. 3); only a number of
events originate from the south and west.
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Figure 3 . Distribution of teleseismic events (red circles) recorde d by four stations (Cro_1, Cro_13,
Cro_14) within ALPASS-DIPS project. Selected events are wi th epicentral distance between 30°
and 90°. The star marks position of the ALPASS-DIPS project.



Receiver functions are calculated using the approach of Kin d et al. (1995)
and Yuan et al. (1997). The P receiver function method is based on the analy -
sis of converted P-to-S phase contained in the P-wave coda. The method is
used to separate the response of the Earth’s structure near t he receiver from
other influences such as the source and ray path through the mant le (Langs-
ton, 1979; Owens et al., 1984; Kind and Vinnik, 1988; Kosarev et al., 1999).
P-to-S conversions are generated at significant velocity discont inuities in the
crust and upper mantle beneath a seismic station, where P waves are partly
converted to S waves. Ps phases travel the last part of their path with shear
velocity. The delay time of the converted Ps phase relative to the arrival time
of the direct P wave depends on the depth of the discontinuity, the ray pa -
rameter of the incident P wave, and the P and S velocities in the layers. By
extracting Ps phases from the P-wave coda, we can acquire information
about the velocity structure beneath the recording site. Th e seismometers at
seismic stations are oriented in the ZNE coordinate system, and most of the
Ps converted energy is contained in the horizontal components . Rotation of
the ZNE component waveforms into the local P-SV-SH ray-based coordinate
system isolates the Ps converted phases in the SV component, which is per-
pendicular to the direction of the P component containing the P-wave mo-
tion. The influences of the travel path effects and source pa rameter are re-
moved by deconvolution of the P component from the SV component. The SV
component is called receiver function . The final P receiver function contains,
in addition to the primary converted phases, multiple refle ctions and conver-
sions generated between velocity discontinuities in the cr ust and the Earth’s
surface.

Pre-processing of the selected teleseismic data consisted of cutting each
waveform to a 150 s long window, 50 s before P-wave arrival, and 100 s after.
The data were first filtered with Butterworth bandpass filter betw een 0.1 and
1 Hz. The rotation to P-SV-SH coordinate system was based on theoretical
back azimuth and incidence angle.

Receiver functions obtained for different events at each station are s tack-
ed to improve the signal-to-noise ratio. Calculated receiver fun ctions should be
equalized for the epicentral distances and ray paths (moveout corr ection) in
order to obtain the constructive interference of stacked traces. W ith regard to
epicentral distances (>30°), it is acceptable to approximate th e incoming P
waves as plane waves. The delay times of Ps conversions of all receiver func -
tions have been adjusted with regard to the arrival time of the Ps phase at a
reference epicentral distance of 67° (ray parameter of 6.4 sec/°, Yua n et al.,
1997). The velocity model used is IASP91, a global one-dimensiona l velocity
model (Kennett and Engdahl, 1991).

The analysis of receiver functions is here focused on information about the
depth of the Mohorovi~i} discontinuity and velocity disconti nuities within the
crust. Forward modelling of receiver functions has been used to obta in the
shear-velocity structure of the crust beneath each station.
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4. Observed receiver functions

The distance-corrected, individual P receiver functions calculated for the
three stations in Istra (Cro_01, Cro_13, and Cro_14) are summ ed and present-
ed in Figs 4a–4c. The traces are arranged with increasing bac k azimuth. Positive
amplitudes (black) indicate a velocity increasing with depth, w hereas negative
amplitudes (gray) indicate a velocity decreasing with depth. Zero time corres -
ponds to direct P-wave arrival. All the three stations obtained good Moho con -
versions, although short-period seismometers were used.

The receiver functions for the stations in Istra show a similar w aveform
with three main positive amplitudes in the first 6 s. The first a mplitude is ob -
served between 0 and 0.5 s after the direct P-wave arrival with the greatest
amplitude at station Cro_01 (Fig. 4a). This shallowest conver ted phase origi -
nates from discontinuity in the upper crust. Positive amplitu de indicates a ve-
locity increase with depth, so most probably it originates from the high-veloc -
ity layer in the upper 5 to 6 km observed under the Istra near the inters ection
of Alp07 and Alp01 profiles (Brückl et al., 2007; [umanovac et al ., 2009). The
origin of this amplitude will be confirmed by the forward model ling of receiver
functions in the next chapter.

A conversion with positive polarity between 2 and 3 s can be seen at al l
stations. The amplitude of this phase is strong at stations C ro_13 and Cro_14
(Figs 4b and c), whereas it is rather weak at the stacked trace of the Cro_01
station (Fig. 4a). However, the amplitude is rather strong o n some individual
traces of station Cro_01. The conversion observed in the tim e interval be-
tween 2 and 3 s most probably originates from discontinuity at the boundary
between the upper and lower crust. However, the presence of st rong, shallow
discontinuities or significant sedimentary cover may cause lar ge-amplitude re -
verberations masking the primary Ps converted phases and making the esti -
mation of the discontinuity depth difficult (Geissler et al ., 2005; van der
Meijde et al., 2003). The converted phase from the Moho arrives a t delay time
between 4.6 and 5.2 s, depending on the station. The Ps delay time indicates
the shallowest Moho at station Cro_13 (Fig. 4b), and the deepest M oho at sta-
tion Cro_14 (Fig. 4c).

5. Receiver function modelling

The main goal of forward modelling was to construct a relatively simple
model that can describe well the main phases in the observed receiver fu nc-
tion. The synthetic receiver functions were calculated by using th e code of
Frederiksen and Bostock (2000). Models consisted of homogeneous is otropic
layers above the half space, with boundaries that were parallel to the surface.
Each layer was defined according to its thickness, S-wave velocity, P-wave ve-
locity, and density.
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Figure 4 . Receiver functions for stations in Istra: (a) Cro_01, (b) C ro_13 and (c) Cro_14. Individual
traces are arranged with increasing back azimuth (rectangl es). Epicentral distances are indicated
with black dots. Stacked trace for all events is shown at the t op.



Temporary seismic stations Cro_13 and Cro_14 are located in Ist ra, at the
end of the profile Alp01 from the ALP 2002 experiment (Fig. 1). Ther efore, the
initial velocity models under both stations are extracted from th e P-wave ve-
locity model along the Alp01 profile (Brückl et al., 2007). Sta tion Cro_01 is lo -
cated near the intersection of the Alp07 and the Alp01 profiles (Fi g. 1), so the
initial 1-D models are derived from both P-wave velocity models. The velocity
models are smoothed to consist of four to five layers over a half sp ace in the
mantle. The S-wave velocities were calculated from the Vp with the assumed
Vp/Vs ratio of 1.726 in the upper crust, 1.74 in the lower crust, and 1. 79 in the
mantle (Kennett and Engdahl, 1991). Based on the given model, receiv er func -
tions were calculated for the converted Ps phases and their multiples of the
first order. The rotation was done to the P-SV-SH coordinate system, so that
the receiver function component consists of mainly SV energy. Due to the ro -
tation in the ray-based coordinate system, the receiver function does not con-
tain the direct P wave, but the first amplitude corresponds to a shallow discon -
tinuity. Synthetic receiver function was then compared with the st acked trace
for each station.

At station Cro_01, both the initial models could not explain wel l the ob -
served receiver function. Calculated receiver function from the Alp0 1 and
Alp07 velocity models give the Ps phase from the Moho about 1.5 s earlier than
the observed receiver function (Fig. 5), indicating that the crus tal thickness is
greater. According to the amplitude size, velocity contrast at t he Moho is well
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Figure 5 . Results of the modelling for station in Istra, Cro_01. The i nitial velocity models were
extracted from the P-wave velocity model along the Alp01 profile (blue line) and Alp07 profile
(green line). The best fitting synthetic receiver function is shown with red line.



defined in the Alp07 profile. The observed receiver function shows a s trong
phase in the first second that can be attributed to a significan t velocity in -
crease near the surface. High velocity layer (HVL) at less than 5 km d epth is
also defined in the deep seismic refraction profiles Alp01 and Alp07 . A much
better fit to the observed receiver function is obtained for the model w ith a
stronger velocity increase at about 2 km depth (Fig. 5; red line) fol lowed by
6 km thick HVL ( Vs = 3.6 km/s). Below this layer, velocity decreases, and it is
rather low until the boundary between the lower crust and the upper c rust
(~19 km). The shear-velocity structure defined by the final model sh ows the
main velocity contrast at a depth of 37 km, which can be interpreted as the
Mohorovi~i} discontinuity.

According to the initial model under station Cro_13 (Fig. 6a; b lue line),
velocity is high in the shallowest part of the upper crust (to a dep th of 6 km).
The high-velocity anomaly is followed by a lower velocity ( Vp < 6.20 km/s),
which extends to a depth of 18 km. The Mohorovi~i} discontinu ity is located at a
significantly shallower depth ( ~28 km) as compared with the rest of the Alp01
profile. Synthetic receiver function is first calculated for the i nitial model. It
shows that the Ps phase converted at the Mohorovi~i} discontinuity comes
much earlier than in the observed receiver function; and based on ampl itude
value, the velocity contrast is very high (Fig. 6a). Discrepancy also exists with
regard to the converted Ps phases on the intracrustal discontinuity. The am-
plitudes calculated from the Alp01 model are very low, and delay ti mes do not
match the observed receiver function. It was necessary to adjust the velocity
model to obtain a better fit of the synthetic and observed receiver func tions.

The initial model was changed with a high-velocity layer at a depth between
2.2 and 8.2 km (Vs = 3.65 km/s) followed by a lower velocity than had been de-
fined in the Alp01 model. In this way, the velocity contrast at th e interface be-
tween the upper and lower crust was greater. The Moho depth in the new
model was considerably changed, to a depth of 40 km (Fig. 6a; red lin e). The
high-velocity layer is 6 km thick, the same as at the station Cro _01. An at-
tempt to decrease its thickness to 4 km results in a misfit between the s yn-
thetic and observed receiver functions (Fig. 6b; green line). Syntheti c receiver
function shows additional amplitude at approximately 3 s dela y time, which is
not visible in the observed receiver function. Unsatisfying resul ts are also
obtained for a model with thinner HVL at a greater depth, between 3.2 and
7.2 km (Fig. 6b; purple line).

The initial 1-D model under station Cro_14 was also constructed from the
P-wave velocity model along the Alp01 profile; and in the upper cru st, it de -
monstrated similar features to the model under station Cro_ 13 (Fig. 7a; blue
line). However, the thickness of the lower crust is greater u nder station Cro_14,
and Mohorovi~i} discontinuity is situated much deeper, at a depth of 40 km.
The synthetic receiver function obtained from this model shows very small
amplitudes of the Ps phases that originate from the interfaces in the crust than
on the observed receiver function (Fig. 7a). In contrast, the synt hetic receiver
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function shows stronger amplitude of the Ps phase from the Moho. This indi -
cates a too large velocity contrast at the crust-mantle bounda ry in the initial
model. The difference in the delay time of the Ps phase from the Moho is not
as great as for station Cro_13, which means that the Moho dept h in the model is
better defined. A good fit to the observed data was obtained for the mo del with
intracrustal discontinuity at a depth of 20 km, but with very st rong velocity
contrast ( Vs = 3.27 to 4.0 km/s) needed to satisfy the strong amplitude with
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Figure 6 . Forward modelling of the receiver function at station Cro_ 13: (a) for the initial model
from Alp01 profile (blue line) and final model (red line); (b ) models with smaller thickness of the
high-velocity layer: with the same depth of the top of the HVL (green) and with the greater depth
of the top (purple).



delay time about 3 s (Fig. 7a, purple line). However, the velocity c ontrast
seemed to be unrealistic; so, the modelling was done with a smaller v elocity in
the lower crust (Fig. 7, red line). The refraction model of the Alp0 1 profile also
does not show significant velocity contrast within the crust.

The example of the crustal velocity model under the station Cro_1 4 also
shows the need for high velocity in the shallowest part followed by the lower
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Figure 7 . Forward modelling of the receiver function at station Cro_ 14: (a) for the initial model
from Alp01 profile (blue line), model with strong intracrus tal discontinuity which fits well the ob -
served receiver function (purple line) and final model (red line); (b) comparison of a model without
velocity decrease in the upper crust (green) with the final m odel (red).



velocity (Fig. 7b). The shear velocity model with a gradual increa se in velocity
within the crust gives the unsatisfying fit between the observed an d synthetic
receiver function (Fig. 7b; green line).

6. Discussion and conclusions

The teleseismic data recorded at three temporary seismic stations in Istra,
within the ALPASS-DIPS experiment, were analysed by the P receiver func -
tion method. Calculated receiver functions pointed to the main cha racteristics
of the Earth’s crust in Istra, but a more precise crustal struc ture beneath the
three stations has been estimated by 1-D forward modelling. The resu lting
crustal models are presented as S-wave velocity models.

Shear-velocity structures obtained from 1-D forward modelling i nclude
significant velocity contrast at the depth of 2–3 km, for all th e three stations in
Istra (Fig. 8). This shallow velocity discontinuity was requi red to fit the ob -
served receiver functions. High-velocity structure in the uppermo st 5 km is
also present in the models based on deep seismic refraction profiles in Istra
(Brückl et al., 2007; [umanovac et al., 2009). Exploration bor eholes in this
area drilled for oil and gas prospecting found anhydrite/gypsum series as well
as alternations of dolomitic limestones with anhydrite which h ave rather high
seismic velocities (Sheriff and Geldart, 1995). In line with the d eep seismic re-
fraction survey and well-logging data, shallow high-velocity structure may be
attributed to the carbonate platform sediments i.e. the anhydri te series.

At stations Cro_13 and Cro_14, there are strong phases between 2 an d 3 s
delay time; in other words, between the shallow high-velocity struc ture and
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Figure 8. Final models of the S wave velocity structures beneath three stations in Istra ploted in
the north-south direction. Locations of the stations are ma rked on the map (right) with red rect -
angles.



the Moho. This phase can be attributed to Ps conversion from intracrustal ve -
locity. To fit the observed phases, velocity models were defined with rather
strong velocity discontinuity at approximately 20 km depth (Fi g. 8). The
southern part of the deep seismic refraction profile Alp01 does not contain
such a large intracrustal discontinuity, but the Moho depth u nder station
Cro_13 is defined at 28 km (Brückl et al., 2007). There is still a po ssibility that
these phases could be stronger because of the influence of multipl es from the
near-surface structures. This could be true for station Cro_1 4 with a strong
velocity increase in the shallowest part, but the model of statio n Cro_13 does
not include such a strong, shallow velocity contrast. The S-velocity crustal
structure is in good agreement with the receiver function study of S tip~evi} et
al. (2011) at the station located near Rijeka (Northern Adriatic , Fig. 1). They
reported a two-layered crust with a 3 km-thick low-velocity layer a bove the up-
per crust and rather high velocities in the upper crust.

The results of the 1-D forward modelling at the stations in Istr a reveal
crustal thicknesses between 37 and 43 km that decrease from north to s outh
(Fig. 8). The Moho depth obtained from receiver functions for stat ions Cro_01
and Cro_13 is significantly greater than the one from the deep seis mic refrac -
tion experiment. It should be noted that these stations are at the v ery end of
the Alp01 profile, where ray coverage is much lower than the rest of the pro-
file. The difference in Moho depth, but only partly, could be caus ed by differ-
ent methods that sample the boundaries in different places. Shallo wer Moho
from receiver function modelling could be obtained if lower S wave v elocity is
considered in the crust. By considering higher values of the Vp/Vs the interface
would be shallower. If Vp/Vs of 1.8 instead of 1.76 was applied in the lower
crust under the station Cro_13, we could get the depth of the Moho about
3 km shallower.

Crustal thickness in Istra obtained by receiver function forward modelling
is in accordance with the known relationships of the Mohorovi ~i} discontinuity
depth in the area of Northern Adriatic (Aljinovi}, 1987; Ziegler a nd Dézes,
2006; Tesauro et al., 2008; Grad et al., 2009), but the difference i n the absolute
Moho depth is between 2 and 5 km.

Acknowledgements – The authors would like to thank Attila Csaba Kovács and Istv án
Török from the Eötvös Lorand Geophyiscal Institute of Hunga ry for their help in data pro -
cessing. They wish to thank Prof. Dr. Rainer Kind and Dr. Foro ugh Sodoudi for their hospi -
tality at GeoForschungsZentrum Potsdam and for enabling th e use of programs for the cal -
culation of receiver functions. They would also like to than k Prof. Dr. Zoltan Hajnal and
Geological Survey of Canada for making available MARK L4-1D seismometers and Eötvös
Lorand Geophyiscal Institute of Hungary for ELGI-DAS data l oggers.

The final data processing and interpretation was performed within project no. 195 -
-1953091-3090, approved by the Ministry of Science, Educat ion and Sports of the Republic
of Croatia.

260 J. ORE[KOVI] ET AL. : CRUSTAL STRUCTURE BENEATH ISTRA PENINSULA



References

Aljinovi}, B. (1987): On certain characteristics of the Moh orovi~i} discontinuity in the region of
Yugoslavia, Acta Geol., 17, 13–20.

Anderson, H. and Jackson, J. (1987): Active tectonics of the Adriatic region, Geophys. J. Int. , 91,
937–983, DOI: 10.1111/j.1365-246X.1987.tb01675.x.

Brückl, E., Behm, M., Grad, M., Guterch, A., Heged ás, E., Keller, G. R., Kominaho, K., Kovacs, A.,
Kozlovskaya, E., Lambrecht, A., Mitterbauer, U., Ore{kovi }, J., Rumpfhuber, E., [umanovac,
F., Tiira, T., Velasco, A., Wilde-Piorko, M. and ALPASS Work ing Group (2005): ALPASS –
Passive seismic monitoring in the Eastern Alps, Eos Trans. AGU , 86(52), Fall Meet. Suppl.,
Abstract S41A-0974.

Brückl, E., Bleibinhaus, F., Gosar, A., Grad, M., Guterch, A ., Hrubcová, P., Keller, G. R., [umano -
vac, F., Tiira, T., Yliniemi, J., Heged ás, E. and Thybo, H. (2007): Crustal structure due to colli -
sional and escape tectonics in the Eastern Alps region based on profiles Alp01 and Alp02 from
the ALP 2002 seismic experiment, J. Geophys. Res., 112, B06308, DOI: 10.1029/2006JB004687.

Brückl, E., Bodoky, T., Heged ás, E., Hrubcová, P., Gosar, A., Grad, M., Guterch, A., Hajnal , Z.,
Keller, G. R., [picak, A., [umanovac, F., Thybo, H., Weber, F . and ALP 2002 Working Group
(2003): ALP 2002 Seismic Experiment, Stud. Geophys. Geod., 47, 651–657.

Console, R., Di Giovambattista, R., Favali, P., Presgrave, B. W. and Smriglio, G. (1993): Seismicity
of the Adriatic microplate, Tectonophysics, 218, 343–354.

D’Agostino, N., Avallone, A., Cheloni, D., D’Anastasio, E. , Mantenuto, S. and Selvaggi, G. (2008):
Active tectonics of the Adriatic region from GPS and earthqu ake slip vectors, J. Geophys. Res.,
113, B12413, DOI: 10.1029/2008JB005860.

Frederiksen, A. W. and Bostock, M. G. (2000): Modelling tele seismic waves in dipping anisotropic
structures, Geophys. J. Int. , 141, 401–412, DOI: 10.1111/j.1365-246X.2009.04115.x.

Favali, P., Mele, G. and Mattietti, G. (1990): Contribution to the study of the Apulian microplate
geodynamics, Mem. Soc. Geol. It., 44, 71–80.

Geissler, W. H., Kämpf, H., Kind, R., Klinge, K., Plenefisch , T., Horálek, J., Zedník, J. and Nehybka,
V. (2005): Seismic structure and location of a CO2 source in t he upper mantle of the western
Eger (Oh Íe) Rift, central Europe, Tectonics, 24, TC5001, DOI: 10.1029/2004TC001672.

Geological Map of the Republic of Croatia (2009): Geolo{ka k arta Republike Hrvatske, 1:300.000,
Croatian Geological Survey, Zagreb.

Grad, M., Tiira, T. and ESC Working Group (2009): The Moho dep th map of the European Plate,
Geophys. J. Int ., 176, 279–292.

Grenerczy, G., Sella, G., Stein, S. and Kenyeres, A. (2005): Tectonic implications of the GPS
velocity field in the northern Adriatic region, Geophys. Res. Lett., 32, L16311, DOI: 10.1029/
2005GL022947.

Ivan~i}, I., Herak, D., Marku{i}, S., Sovi}, I. and Herak, M. (2006): Seismicity of Croatia in the pe -
riod 2002–2005, Geofizika, 23, 87–103.

Kennett, B. L. N. and Engdahl, E. R. (1991): Traveltimes for g lobal earthquake location and phase
identification, Geophys. J. Int. , 105, 429–465, DOI: 10.1111/j.1365-246X.1991.tb06724.x.

Kind, R., Kosarev, G. L and Petersen, N. V. (1995): Receiver f unctions of the stations of the Ger -
man regional Seismic Network (GRSN), Geophys. J. Int. , 121, 191–202.

Kind, R., and Vinnik, L. P. (1988): The upper mantle disconti nuities underneath the GRF array
from P-to-S converted phases, J. Geophys., 62, 138–147.

Kosarev, G., Kind, R., Sobolev, S. V., Yuan, X., Hanka, W. and Oreshin, S. (1999): Seismic evidence
for a detached Indian lithosphere mantle beneath Tibet, Science, 283, 1306–1309.

Langston, C. A. (1979): Structure under Mount Rainier, Wash ington, inferred from teleseismic
body waves, J. Geophys. Res., 84, 4749–4762.

GEOFIZIKA, VOL. 28, NO. 2, 2011, 247–263 261



Mitterbauer, U., Behm, M., Brückl, E., Lippitsch, R., Guter ch, A., Keller, G. R., Koslovskaya, E.,
Rumpfhuber, E. M. and [umanovac, F. (2011): Shape and origin of the East-Alpine slab con -
strained by the ALPASS teleseismic model, Tectonophysics, 510, 195–206.

Mohorovi~i}, A. (1910): Potres od 8. X 1909. (Das Beben vom 8. X. 1909.), Godi{nje izvje{}e Zagre -
ba~kog meteorolo{kog opservatorija za godinu 1909. (Jahrb uch des meteorologischen Observa-
toriums in Zagreb (Agram) für das Jahr 1909), 9(4), 1–56 (and English translation in 1992:
Earthquake of 8 October 1909, Geofizika, 9, 3–55).

Oldow, J. S., Ferranti, L., Lewis, D. S., Campbell, J. K., D’A rgennio, B., Catalano, R., Pappone, G.,
Carmignani, L., Conti, P. and Aiken, C. L. V. (2002): Active f ragmentation of Adria, the North
African promontory, central Mediterranean orogen, Geology, 30, 779–782.

Owens, T. J., Zandt, G. and Taylor, S. R. (1984): Seismic evid ence for an ancient rift beneath the
Cumberland Plateau, Tennessee: A detailed analysis of broa dband teleseismic P waveforms,
J. Geophys. Res., 89, 7783–7795.

Schmid, S. M., Bernoulli, D., Fügenschuh, B., Matenco, L., S chefer, S., Schuster, R., Tischler, M.
and Ustaszewski, K. (2008): The Alpine–Carpathian–Dinari dic orogenic system: correlation
and evolution of tectonic units. Swiss J. Geosci., 101, 139–183.

Sheriff, R. E. and Geldart, L. P. (1995): Exploration seismology . Second Edition, Cambridge Univ.
Press, Cambridge, 592 pp.

Stip~evi}, J., Tkal~i}, H., Herak, M., Marku{i}, S. and Hera k, D. (2011): Crustal and uppermost
mantle structure beneath the External Dinarides, Croatia, determined from teleseismic re -
ceiver functions, Geophys. J. Int. , 185, 1103–1119, DOI: 10.1111/j.1365-246X.2011.05004.x.

[umanovac, F. (2010): Lithosphere structure at the contact of the Adriatic microplate and the
Pannonian segment based on the gravity modelling, Tectonophysics, 485, 94–106, DOI: 10.1016/
j.tecto.2009.12.005.

[umanovac, F., Ore{kovi}, J., Grad, M. and ALP 2002 Working G roup (2009): Crustal structure at
the contact of the Dinarides and Pannonian basin based on 2-D seismic and gravity interpreta-
tion of the Alp07 profile in the ALP 2002 experiment, Geophys. J. Int. , 179, 615–633, DOI:
10.1111/j.1365-246X.2009.04288.x.

Tesauro, M., Kaban, M. K. and Cloetingh, S. A. P. L. (2008): Eu CRUST-07: A new reference model
for European crust, Geophys. Res. Lett., 35, 5313–5318, DOI: 10.1029/2007GL032244.

Van der Meijde, M., van der Lee, S. and Giardini, D. (2003): Cr ustal structure beneath broad-band
seismic stations in the Mediterranean region, Geophys. J. Int ., 152, 729–739.

Vlahovi}, I., Ti{ljar, J., Veli}, I. and Mati~ec, D. (2005): Evolution of the Adriatic Carbonate Plat -
form: Palaeogeography, main events and depositional dynam ics, Palaeogeogr. Palaeoclimatol.
Palaeoecol., 220, 333–360.

Weber, J., Vrabec, M., Pavlov~i~-Pre{eren, P., Dixon, T., J iang, Y. and Stopar, B. (2010): GPS-de-
rived motion of the Adriatic microplate from Istria Peninsu la and Po Plain sites, and geody -
namic implications, Tectonophysics, 483, 214–222.

Westaway, R. (1990): Present-day kinematics of the plate bo undary zone between Africa and Eu -
rope, from the Azores to Aegean, Earth Planet. Sci. Lett. , 96, 393–406.

Yuan, X., Ni, J., Kind, R., Mechie, J. and Sandvol, E. (1997): Lithospheric and upper mantle struc -
ture of southern Tibet from a seismological passive source e xperiment, J. Geophys. Res., 102,
27491–27500.

Ziegler, P. A. and Dézes, P. (2006): Crustal evolution of Wes tern and Central Europe, Mem. Geol.
Soc. Lond., 32, 43–56.

262 J. ORE[KOVI] ET AL. : CRUSTAL STRUCTURE BENEATH ISTRA PENINSULA



SA@ETAK

Struktura kore na podru~ju Istre odre|ena na temelju analiz e
funkcija prijemnika

Jasna Ore{kovi}, Franjo [umanovac i Endre Heged uds

Struktura Zemljine kore na podru~ju Istre odre|ena je ispod tri privremene seizmi -
~ke stanice postavljene u okviru projekta pasivnih seizmi~ kih istra`ivanja ALPASS-DIPS
(Alpine L ithosphere and Upper Mantle PAS sive Seismic Monitoring – DI narides--
Pannonian Segment). Stanice su se nalazile na sjeveroisto~nom rubu Jadranske m ikro -
plo~e u podru~ju sjevernog Jadrana. Nova saznanja o gra|i kore u Istr i doprinijeti }e
poja{njenju dana{njih tektonskih odnosa na {irem podru~ju, po sebno kontaktu Jadran -
ske mikroplo~e i Europske plo~e. Seizmogrami dalekih potresa anal izirani su metodom
P funkcija prijemnika, koja omogu}ava definiranje diskontinuitet a u kori i gornjem
pla{tu neposredno ispod stanice. Pored funkcija prijemnika iz vedeno je i jednodimen-
zionalno modeliranje kako bi se detaljnije definirala struktura k ore. Rezultat su modeli
brzina S-valova u kori i gornjem pla{tu ispod stanica. Izra~unate funkcije pr ijemnika
na sve tri stanice pokazuju tri konvertirane faze u prvih 5 s nakon di rektnog P-vala.
One ukazuju na postojanje tri diskontinuiteta brzina u kori, i to diskontinuitet u
najpli}em dijelu gornje kore, diskontinuitet na granici gornje i donje kore te Mohorovi-
~i}ev diskontinuitet. Rezultati modeliranja na sve tri stanic e u Istri pokazuju da se na
dubini izme|u 2 i 8 km nalazi sloj velike brzine. Uzrok velikih b rzina mogla bi biti
karbonatna platforma, odnosno izmjene anhidrita i dolomita koji i maju velike seizmi-
~ke brzine. Granica gornje i donje kore definirana je na dubini iz me|u 18 i 20 km. Mo-
deli brzina S-valova pokazuju smanjenje dubine Mohorovi~i}evog diskontin uiteta od
43 km u sjevernom dijelu Istre, do 37 km u jugoisto~nom dijelu I stre.

Klju~ne rije~i : Istra, struktura kore, P funkcije prijemnika, modeliranje

Corresponding author’s address: Jasna Ore{kovi}, Univers ity of Zagreb, Faculty of Mining, Geology and Petroleum
Engineering, Pierottijeva 6, HR-10000 Zagreb, Croatia, te l: +385 (0)1 5535 747, fax: +385 (0)1 5535 743,
e-mail: jasna.oreskovic@rgn.hr

GEOFIZIKA, VOL. 28, NO. 2, 2011, 247–263 263


