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Wind energy is a weather and climate-dependent energy resource with 
natural spatio-temporal variabilities at time scales ranging from fraction of 
seconds to seasons and years, while at spatial scales it is strongly affected by 
the terrain and vegetation. To optimize wind energy systems and maximize the 
energy extraction, wind measurements on various time scales as well as wind 
energy forecasts are required and needed. This study focuses on spatio-temporal 
characteristics of the wind velocity in complex terrain, relevant to wind energy 
assessment, operation, and grid integration, using data collected at 11 towers 
ranging from 40 to 80 m tall over a 12-year period in complex terrain of western-
central and northern Nevada, USA. The autocorrelation analysis, Detrended 
Fluctuation Analysis (DFA) and Detrended Cross-Correlation Analysis (DCCA) 
showed strong coherence between the wind speed and direction with slowly 
decreasing amplitude of the multi-day periodicity with increasing lag periods. 
Besides pronounced diurnal periodicity at all locations, statistical analysis and 
DFA also showed significant seasonal and annual periodicities, long-memory 
persistence with similar characteristics at all sites and towers with a relatively 
narrow range of the Weibull parameters. The DCCA indicates similar wind 
patterns at each tower, and strong correlations between measurement sites in 
spite of separations of about 300 km across the towers’ setup. The northern 
Nevada area exhibits higher wind resource potential and higher wind persis-
tence compared to the western-central region. Overall, the DFA and DCCA 
results suggest higher degree of complementarity among wind data at measure-
ment sites compared to previous standard statistical analysis. 

Keywords: wind towers, wind energy, wind resource assessment, detrended fluc-
tuation analysis, wind regime, autocorrelation analysis, detrended cross-corre-
lation analysis 
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1. Introduction and experiments setup

Investments in renewable energy are justified in both environmental and 
economic terms. On the one hand, climate change risks claim for mitigation 
strategies aimed at reducing pollutant emissions and, on the other hand, energy 
supply is facing high uncertainty by the current or future global economic crisis, 
and the foreseen fossil fuel resources’ depletion. Consequently, there is strong 
need to replace fossil fuels-based electricity generation with wind, solar, geother-
mal, biomass, or/and water electricity generation.  Wind energy is playing a 
strategic role in efforts of any country for sustainable development and energy 
supply security. Assessment and forecasting of wind resources is of great impor-
tance for the community, especially in times of global climate change (e.g., Pryor 
and Barthelemie, 2010). Wind turbines and associated technologies are rapidly 
advancing for both large- and small-scale facilities. Due to the high spatial and 
temporal wind and turbulence variabilities, it is essential to understand wind 
patterns and evolution. To optimize wind energy systems and to maximize en-
ergy extraction, annual, monthly, daily, hourly, and even minute wind velocity 
probability distributions, wind velocity measurements, as well as wind energy 
forecasting are needed and required. Wind power intermittency and variability 
have also negative effects on grid power quality and wind energy economics.

From observational viewpoints, surface measurements with approximate 
interpolation and extrapolation algorithms are in most cases insufficient and 
inaccurate to determine wind properties aloft. Efficient and recommended ob-
servations include in situ measurements with towers and remote sensing using 
acoustic sounders and lidars. Wind is a weather- and climate-dependent energy 
resource, with natural spatio-temporal variability at time scales ranging from 
fraction of seconds to seasons and years, while being strongly affected by the 
terrain and vegetation. As the turbine hub heights and size of blade sizes are 
increasing, it is important to analyze and predict 3-D wind and turbulence struc-
ture. Accurate assessment, modeling, and forecasting of the spatial and temporal 
properties of the winds and turbulence, especially in complex terrain, remains 
the most significant challenge in wind energy production (Koračin et al., 2014a). 
Three main approaches to wind and wind power predictions are: physical, sta-
tistical, and computer-learning techniques. The physical approach consists of 
using high resolution numerical models to predict winds and wind shear in the 
atmospheric boundary layer relevant to wind resource assessment (e.g., Horvath 
et al., 2012; Smith et al., 2014). Various statistical methods are used to examine 
the relationships between measurements, observations and past weather fore-
casts to estimate most likely wind behavior in the future. The computer-learning 
techniques are based on AI principles to find relationships between input data 
and power output data (e.g., artificial neural networks, Bayesian network, and 
fuzzy logic). Details on various approaches to wind and wind power forecasting 
can be found in Koračin et al. (2014b).
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Wind velocity spatio-temporal variability can be also modeled using long-
memory processes, involving not only wind velocity probability distributions, but 
also auto- and cross-correlation coefficients. The integration of large-scale wind 
power puts forward significant challenges to power system coping with inherent 
uncertainty of energy sources. Stochastic and fluctuating nature of wind power 
requires significant flexibility from power systems, bringing issues on storage, 
reliability, and cost. The spatio-temporal wind power correlations have signifi-
cant impacts on its overall uncertainty and in turn, their impacts on the power 
system planning and operation (Calif and Schmidt, 2014). While temporal cor-
relations are reflecting the power output of each wind energy system, the spatial 
correlations may reveal dependency among different wind energy sites. Charac-
terizing wind variability and resource complementarity is especially challenging 
over complex terrain. The observational networks in complex terrain need rea-
sonably high density of spatial sampling to adequately resolve the most impor-
tant flow characteristics. Usually, slow flow fluctuations are mainly due to at-
mospheric dynamics and they are widely correlated spatially and temporally. 
Slow fluctuations in power output of near wind farms are quite correlated with 
wind characteristics and wind forecast models are used to optimize power dis-
patch. However, fast wind speed fluctuations are mainly due to meteorological 
mesoscale and microscale dynamics. The studies of wind velocity and wind en-
ergy correlations at wind farms over the last twenty years have yielded several 
important insights with relevance to grid integration, power system operation, 
and planning. To manage wind power variability and uncertainty, new statisti-
cal tools are being sought, developed, and utilized. The main objective of this 
study is to investigate statistical relationships of data from a network of tall 
towers in complex terrain in Nevada. In particular, the emphasis is on spatio-
temporal characteristics of data from eleven towers relevant to wind power as-
sessment in the period 2003–2014.  

2. Data analysis and methodology

The data analyzed in this work were collected during several field cam-
paigns, using meteorological towers operated by the Desert Research Institute, 
Reno, Nevada, USA. The towers were operated from September 2003 through 
March 2014. The objectives of these field programs were to analyze and assess 
the wind energy potential in this area of west-central and northern Nevada (Belu 
and Koračin, 2009, 2013; Koračin et al. 2009, 2014a) and evaluate high-resolu-
tion models with fixed and adaptive grid structures. This area is characterized 
by complex terrain in the proximity of the Sierra Nevada and Inyo Mountain 
ranges. The region has complex patterns of wind climate, governed by a variety 
of non-linear and non-hydrostatic phenomena (Horvath et al., 2012; Smith et al., 
2014). The region climate is generally semiarid and vegetation is sparse. The 
current observational evidence of the near-surface winds and their diurnal and 
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seasonal variability in Nevada is rather poor, except for knowledge from a sparse 
network of surface stations and a few field experiments.

The first experiment, consisting of four 50-m towers and one 80-m tower was 
run near Tonopah, located in western Nevada. Figure 1 shows the tower locations 
and terrain characteristics of the experimental sites. The 50-m towers were 
operated for a period of over four and half years from August 2003 through March 
2008. The wind speed was measured with cup anemometers at the 10-m, 20-m, 
30-m, 40-m, and 50-m levels, while the wind directions were measured by wind 
vanes at the 10-m and 50-m levels.

During the second experiment, an additional 80-m tower was operated near 
Tonopah from February 2007 until March 2008. The wind velocity was measured 
by sonic anemometers with a sampling rate of 20 Hz at four levels: 10 m, 40 m, 
and 80 m.

The third experiment was conducted, almost continuously, in the northern 
region of Nevada from May 2006 until March 2014 (Belu and Koračin, 2009, 
2013; Koračin et al. 2009, 2014a). The field programs included two 60-m towers 
(WT1-NC101, and WT2-NC102) instrumented with standard and sonic anemo-
meters, and deployment of an acoustic sounder. The towers were located on 
ridges of the Virginia Hills, Nevada. The Virginia Mountains is an irregular 
mountain range in Washoe County, Nevada, north of Reno, extending north-
northwest to south-southeast for about 35 km. Ophir Hill is one of the summits 
in Storey County, Nevada, near Virginia City, 39.3° N and 119.6° W, and at the 
approximate elevation of 2,369 m above sea level. WT1 and WT2 towers were 

Figure 1. Topographical setup of wind tower locations: 50-m and 80-m towers near Tonopah [Belu 
and Koračin, 2009, 2013] (left panel ) and Reno and Washoe Valley ridge areas (Wind Tower 1 (WT1), 
WT2, 60 m towers; and Ophir Hill, North Comstock (NC100), and WT3 (NC103) 40-m towers) 
[Koračin et al., 2014a] (right panel ). See the text for details.



GEOFIZIKA, VOL. 36, NO. 2, 2019, 111–130 115

located 2,700 m apart with a vertical distance of 140 m. Each tower had a down-
hill exposure of rolling complex terrain, with the nearby valley floor at 3,200 m 
to the west and 800 m below the summit. Instrumentation on the 60-m towers 
consisted of the following: cup anemometers at 20 m, 40 m, and 60 m, sonic an-
emometers at 20 m and 60 m, and wind vanes at 20 m and 60 m. The fourth 
experiment included one 60-m tower and two 40-m towers located in the proxim-
ity of the Reno and Carson City area (see Fig. 1, right panel). Setups of instru-
mentation on the NC103 (WT3) tower was similar to WT1 and WT2 towers, while 
NC100 (Ophir Hill) had also measurements at 20 m and 40 m levels. Abbrevia-
tions NC for tower identification stand for New Comstock, where Comstock is a 
district in Nevada. For the full experimental settings details please see Belu and 
Koračin (2009, 2013) and Koračin et al. (2009, 2014a). 

Wind energy potential assessment at a site or area requires analysis of wind 
characteristics, probability distributions of the measured wind speed and direc-
tion, the maximum wind speed, and the wind variability and seasonality. Before 
the statistical and spectral analysis of the data, a quality control of all data was 
performed to remove outliers and to interpolate over small data gaps that may 
be present. Overall, the corrected data are of sufficient quality, with less than 
3% of the data removed as outliers or unacceptable data (Belu and Koračin, 2009, 
2013; Koračin, 2014a). Only exception was one of the 60-m towers from the sec-
ond experiment for which about 2 months of data in summer of 2012 were lost 
due to the equipment malfunction. Wind velocities less than 0.5 ms–1 were re-
corded as calm and were not included in this analysis.

3. Wind complementarity and variability

Wind power variability and complementarity tend to follow local wind pat-
terns (Belu and Koračin, 2013). Variations are caused by synoptic processes and 
local topography. Such intermittent and fluctuating energy generation has im-
pacts on power systems. An expectation is that co-locating wind-generated elec-
tricity can assure higher total output of the two when either one of the two 
sources increases and can improve the stability and reliability of the generated 
power, while phasing out some of the inherent variability of these energy sourc-
es. One expects similar effects, even with more constant power outputs, for re-
newable energy generators distributed on a larger geographical area. The vari-
ability and complementarity nature of wind speed was qualitatively noted, 
however, with limited number of studies attempting their quantitative aspects 
(Bunde and Lennartz, 2012; Aguera-Perez et al., 2013; Belu and Koračin, 2013; 
Calif and Schmidt, 2014; Camboin Lopez de Figueredo, 2014; Govidan, 2004; 
Kocak, 2009). Correlations are quantifying the similarities between two time 
series, or characterizing repeated patters in time series, while the correlograms 
are used to represent the time series relationships in visual manners. Autocor-
relations indicate the structural dependence of its successive elements, being 
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closely related to complementarity, variability, and persistence. The simplest 
method of analysing longer-term variations is the use of a moving average, com-
puted as:

 U k
m

vN
i p

i p

l i
1

 (1)

Here, m = 2 p + 1, the length of the moving averaging interval, vi is the 
measured wind speed, for l = 1, 2, …, N samples, and ( )�NU k is the computed 
moving average. The moving averages corresponding to an averaging period of 
one month were computed using the wind speed measured at each site for all 
measurement levels. Figure 2a shows the moving averages for all 50-m towers 
for the composite 2003–2008 data sets and for Ophir Hill 40-m towers, 2006–2010 
composite data sets. The figure indicates seasonal variations of the wind speed 
at all five sites and shows a typical annual cycle with a maximum during the 
spring and with a minimum during the fall. It is clear that a longer measurement 
period is required to further confirm the seasonality. In order to investigate pos-
sible presence of an annual cycle, daily means and their autocorrelations of all 
composite data were computed. Figure 2b shows autocorrelations of daily means 
for the Ophir Hill tower and for the Tonopah towers composite data sets. The 
presence of a deterministic component with a period of about one year is clearly 
visible in the daily wind speed average autocorrelation diagrams. Once again, 
this is in very good agreement with the periodicity found in the moving average 
wind speed diagrams. This is a very important fact for the wind energy conver-
sion systems operation, development, management, and grid integration. Note 
that autocorrelations of the WT1 data are not included in the figure since they 
are similar, almost overlapping, to the Ophir Hill data.

Figure 2. Wind speed moving averages for the 50-m Tonopah towers, 40-m Ophir Hill tower, and 
WT1 tower, composite data sets (left panel) and autocorrelations of the daily means using the Ophir 
Hill tower and the Tonopah towers composite data sets (right panel).
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Figure 3 shows the autocorrelation functions of the hourly wind speed and 
direction at the 50-m level for all four Tonopah towers and for the Stone Cabin 
tower at the 60-m level. The plots show similar patterns in both the wind speed 
and wind direction autocorrelation functions. Similar patterns were found in all 
time series, at all measurement levels and for all sites. It can be noted that all 
these autocorrelations are coincidental, and they show similar daily periodicity. 
Regular oscillations exist,  indicating a quite well-defined periodicity of the wind 
speed in western Nevada in accordance with previous studies (Belu and Koračin, 
2009, 2013). A very slow decrease in the amplitude of the oscillation, as the lag 
time increases, indicates that the wind speed is not strictly periodic but is ran-
domly modulated in frequency and phase (Fig. 3, left panel). This behavior is 
also observed in the wind direction autocorrelation functions illustrated in Fig. 
3 (right panel) for the same towers.

A maintained oscillatory character of these autocorrelation functions indi-
cates that the dominant frequencies associated with the wind speed and direction 
are roughly coincidental. Similar patterns were found for all levels and towers, 
both for wind speed and direction autocorrelations, as well as for cross-correla-
tions, indicating that wind speed and direction signals are in phase. It can be 
also noted that the lag time corresponding to the maximum values of the auto-
correlation functions is about 24 hours. This 24-hour period, as the dominant in 
the signals, shows that this is the time interval that basically governs the chang-
es in wind speed and wind direction. This is related to the day and night chang-
es in local circulation patterns which roughly maintain their structure during 
almost five years of the analyzed time interval. All the autocorrelations show the 
presence of a strong diurnal sinusoidal component, which is almost constant as 
the lag value increases. This indicates that is derived from a deterministic pe-
riod component, and that the diurnal component of the centerline is not the zero 

Figure 3. Autocorrelation functions for 10-min wind speed (left panel) and wind direction (right 
panel) for the Tonopah 2003-2008 composite data sets at the 50-m level and for the Stone Cabin data 
at the 60-m level.
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datum line, but is offset above the lag axis. This offset cannot be due to a zero 
mean (removed by the autocorrelation), suggesting the presence of another pe-
riodic component of a much lower frequency. The obvious candidate for this pe-
riodic component is an annual cycle. This is also in agreement with the presence 
of a spring maximum and a fall minimum in the wind speed moving average 
time series (see Fig. 2 for details).

3.1. Detrended fluctuation analysis and detrended cross-correlation analysis
To further extend the analysis, the Detrended Fluctuation Analysis (DFA) 

was used to quantify and compare correlations in wind velocity time series. DFA 
is a modified root-mean-squares (RMS) analysis using the random walk ap-
proach. In short, DFA computes the RMS error of linear fits (or higher-order 
polynomials and other fitting functions) over progressively larger bins (non-
overlapped “boxes, segments, or intervals” of similar size) of an integrated time 
series. A box (segment) contains a defined number of samples; the box size rep-
resents, therefore, the scale at which the signal is observed. The relationship 
between the overall RMS error and the box size is called the fluctuation function. 
When the fluctuation function follows a linear trend in double-log plots, the slope 
of this linear trend is a scaling parameter α that provides a measure for evaluat-
ing two critical properties of the data series: the presence of long-range correla-
tions and fractal dynamics. Parameter α is related to the Hurst exponent (Kosci-
elny-Bunde, 2006; Telesca et al., 2012) and is used as a measure of long-term 
memory of a time series. It relates to the autocorrelations of the time series, and 
the rate at which they decrease as the lag between pairs of values increases. DFA 
was introduced by Peng et al. (1994) for linear detrending and it was later ex-
tended to higher-order polynomials. This method is very suitable to quantify 
long-term correlations in non-stationary signals and has been successfully ap-
plied to physiological processes, weather records, geophysics, and financial data 
(Bunde and Lennartz, 2012; Kilarly and Janosi, 2005; Koscielny-Bunde et al., 
2006; Marinho et al., 2013; de Oliveiera Santos et al., 2013; Sales dos Anjos et 
al., 2015; Suteanu, 2015; Telesca et al., 2012, 2016; Wang and Xie, 2013).

There are two major reasons why DFA is essential to properly analyze time 
series: first, detrending method prevents the analysis of time series to show be-
ing correlated if correlations are not present; and second, the DFA can reveal 
genuine correlation dependence if correlations do exist, while the conventional 
correlation analysis may fail. Most methods using DFA methods start with the 
assumption that the functional form of trend is a predominant one (Koscielny-
Bunde et al., 1998, 2006; Malamund et al., 2006; Peng et al., 1994; Telesca and 
Lapenna, 2006; Telesca, 2007; Witt and Malamund, 2013). The detrending ap-
plication to original data can be either global or local. There are many situations 
that two or more variables are simultaneously recorded that can exhibit long-
range dependence or multi-fractal nature (Podobnik and Stanley, 2008; Podobnik 
et al., 2009; Wang et al., 2013; Zebebded and Machado Filho, 2009). This can be 
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applied to wind velocity, temperature, humidity, solar radiation, or indexes and 
trading volumes in financial markets (Hajian and Sadegh, 2010; Kirstoufek, 
2014; Telesca et al., 2012, 2016; Vassoler and Zebende, 2013; Zebende et al., 2013; 
Wang et al. 2013). 

In recent years the Detrended Cross-Correlation Analysis (DCCA) was pro-
posed to investigate the long-range cross-correlations between two non-station-
ary time series. It is a generalization of the DFA method and is based on de-
trended covariance, designed to investigate power-law cross-correlations between 
two simultaneously recorded non-stationary time series, extensively applied in 
finance, climatology, geophysics, and medicine (Podobnik and Stanley, 2008; 
Zebende, 2011; Zebende et al., 2013). This method is also suitable to quantify 
long-term correlations in non-stationary signals. However, this method has been 
less frequently used in the wind energy studies. 

The DFA method, an improvement of the classical fluctuation analysis which 
allows the estimation of correlation properties on large time series, is described 
here. Firstly, we compute the cumulative mean of the fluctuation time series or 
so-called ‘profile’ of a time series:

 X n x x
i

N

i
1

 (2)

Here, x is the time series mean. Notice that the mean subtraction is not 
compulsory, since it would be eliminated by later detrending. The time series is 
then segmented into, Ns = int(N/s), non-overlapping segments, intervals or box-
es of the same size (number of the elements in the interval), s, the length scale. 
It is not critical the time series size, N, to be an integer of multiple scale, s, 
therefore a short part of time series may exist at the end of the time series. In 
order to acquire a high degree of accuracy in the estimation process, the forward 
procedure is then applied from the opposite end of the time series (the backward 
direction). Thereby, 2Ns segments, intervals, or boxes of the same size (s) are 
obtained. In each box, the integrated time series is adjusted by using a least 
square linear regression, or a higher-order polynomial function to determine a 
trend. Then the local trend is subtracted to obtain the detrended fluctuation 
functions (Bunde and Lennartz, 2012; Kiraly and Janosi, 2005; de Oliveira San-
tos et al., 2012; Suteanu, 2015). Usually, the fluctuation functions for different 
determining polynomials used are named DFA1, DFA2, DFA3, etc. Note that 
the use of polynomials for detrending time series are sometimes necessary for 
improved capturing of the power-law behavior. It should be noted that the trend 
elimination in a time series depends on the DFA order. After detrending, for each 
segment or interval of size s, the forward and backward variances are deter-
mined. Linear, quadratic, cubic, or higher-order polynomials are usually employed 
in the fitting procedure. Then the root-mean square (RMS) fluctuation, F(s), is 
computed:
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Here, xs(m) for 1 ≤ m ≤ 2Ns, is the difference between the integrated (cumu-
lative) time series and the fitted trend for a box (interval) of size, s. Repeating 
this calculation for different segments (intervals or boxes) sizes provides the 
relationship between the fluctuation function, FDFA(s), computed for each seg-
ment size as in (3) and the segment size s (Marinho et al., 2013; Sales dos Anjos 
et al., 2015; Suteanu, 2015; Telesca et al., 2012, 2016).

Typically, FDFA(s) increases with s according to a power law, as:

 F s sDFA �~�  (4) 

In this way, one can obtain the average fluctuation F(s) as a function of the 
box, interval or segment size s. A linear relationship in a double logarithmic 
diagram reveals a scaling factor between those magnitudes. If the points are 
aligned on the line slope, they represent a scaling exponent. The scaling exponent 
α is obtained as the slope of regression (least square line fitting) of log[FDFA(s)] 
vs. log(s). The value of a = 0.5 indicates the absence of correlation (uncorrelated 
signals), a > 0.5 indicates persistent log-term correlations, meaning that large 
(small) values are more likely to be followed by large (small) values. Values 
a < 0.5 indicate persistent long-term anti-correlations, meaning that large values 
are more likely to be followed by small values and vice versa. The higher is the 
a value the stronger is the persistence (Peng et al., 1994; Telesca et al., 2012, 
2016).

The DCCA procedure consists of the integration of two simultaneously re-
corded time series X(i) and Y(i), i = 1, …, N to produce a cumulative deviation of 
each time series. Then two new sequences were obtained (Horvatic et al., 2011; 
Sales dos Anjos et al., 2015; Telesca et al., 2012,  2016; Vassoler and Zebende, 
2013; Zebende et al., 2013), where k is an integer between 1 and N. X and Y are 
expressed as:

 X k x x Y k y y
i

k

i
i

k

i
1 1

, ��and�  (5)

Here, overbar on x and y denotes the average values of the time series. The 
two cumulative time series (5), X(k) and Y(k) are then divided into Ns = int(N/s), 
non-overlapping segments, intervals or boxes of equal length s, as in the DFA 
method. Because often the time series length, N, is not an integral multiple of 
the scale size, s, a short part at the end of each sequence (time series) may be 
left out. Then the procedure, similarly to the DFA method, is reduplicated from 
the opposite end of each time series, so the entire time series is included. A linear 
(or a higher-order polynomial) is applied in each segment in order to capture the 
local trend in a similar way as it was applied in the DFA procedure. The inte-
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grated series X(k) and Y(k) are detrended by subtracting the defined local trends 
�Xv  and vY  (the fitted polynomial within each segment l = 1, …, Ns) from the data 

in each box. Then, the detrended covariance is computed for the forward time 
series, as:

 ( ) ( ) ( ) ( ) ( )
=

   = − + − ⋅ − + −   ∑  

2

1

1, 1 1
s

l l
i

f l s X l s i X i Y l s i Y i
s

  (6)

And for the reduplicated time series, as:

 ( ) ( ) ( ) ( ) ( )
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for each interval, l = Ns + 1, Ns + 2, …, 2Ns. The detrended covariance fluctuation 
function 2

DCCAF  is then calculated by averaging over all intervals (boxes or seg-
ments), as:

 ( ) ( )
=
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2
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s l

F s f l s
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If only a time series is considered, the DCCA procedure reduces to the de-
trended variance used in the DFA method, as discussed above. Repeating this 
procedure for all segment sizes and different scales, a relationship between 
FDCCA(s) and the segment size s can be determined. If the two series are power-
law correlated, then λ (the cross-correlation scaling exponent) is determined from 
the linear regression of FDCCA(s) ~ sl, with the same interpretation as a, the DFA 
exponent. If l > 0.5, the cross-correlations between the two time series are 
 persistent (positive), meaning an increase (a decrease) in one time series is likely 
to be followed by an increase (a decrease) in the other time series. If l < 0.5, the 
cross-correlations between the two time series are anti-persistent, meaning 
 aincrease (a decrease) in one time series is likely to be followed by a decrease (an 
increase) in the other time series. When l = 0.5, the two time series are not 
cross-correlated. In order to further quantify the level of cross-correlation, the 
DCCA cross-correlation coefficient was computed. The DCCA cross-correlation 
coefficient, rDCCA, for each time scale is defined as the ratio between the de-
trended covariance and the product of detrended variance function of each time 
series:

 ( )
( ) ( )

ρ =
⋅

2 ,
 DCCA i i

DCCA
DFA i DFA i

F x y
F x F y

 (9)

The rDCCA values are between –1 and 1 and a value of rDCCA = 0 means that 
no correlations are present. The DCAA cross-correlation coefficient has the same 
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interpretation as the conventional one. The above relationship leads to a new 
scale for cross-correlation in the time series analysis. For a finite time series, 
because of the size effect, even if cross-correlations are not present, rDCCA has 
presumably some small nonzero value. Therefore, the DCCA cross-correlation 
coefficient serves only as an indicator of the presence of cross-correlations. It is 
worth to note that an important advantage of the DCCA cross-correlation coef-
ficient is that it can be used to quantify the cross-correlation level between two 
different time series, but synchronous at various box (interval) scales s (Kris-
toufek, 2014; Wang and Xie, 2013; Zebende, 2011).

4. Results and discussion

Assessment and analysis of the wind energy potential at a particular site 
involve analyzing characteristics and the distributions of the measured wind 
speed and direction. Of equal importance are also the wind variability and sea-
sonality, such as diurnal or season variations of the wind speeds. Wind charac-
teristics were usually studied by using various probability distribution functions 
of the observed wind velocities. The most common probability distribution func-
tion used in wind energy is the Weibull probability distribution (e.g., Belu and 
Koračin, 2009, 2013; Koračin et al., 2014b, among others). 

To understand the diurnal, seasonal and annual variations of the wind 
speeds and direction, a comprehensive statistical analysis was performed. This 
analysis involves autocorrelation and cross-correlations calculations, detrend-
ed fluctuation analysis, and detrended cross-correlation analysis of the 10-min, 
hourly, and daily composite data sets (time series) for each tower, and observa-
tion periods. Several studies (e.g., Govindan and Kantz, 2004; Kocak, 2009; 
Belu and Koračin, 2013) revealed that the wind speed time series are showing 
self-similarity properties, persistence or, more generally, fractal behavior dem-
onstrated in a power law scaling. However, high frequency sampled records are 
complicated by small scale effects resulted from topography and atmospheric 
variability, usually failing to capture memory effects of large-scale atmospher-
ic circulations. It appears that hourly and daily wind speed variations, and 
longer wind velocity records, with time scales up to hundreds of days, may 
reveal long-range correlations and patterns in observed wind speed time series. 
In order to get more insight in the complementarity and variability of the wind 
energy resources in the study areas, autocorrelations, cross-correlations, DFA 
variance, DCCA covariance, and DCCA cross-correlation coefficients were com-
puted for all wind velocity time series and for all available combinations of all 
tower data time series.

The results of the DFA analysis of wind time series for the experimental sites 
are shown in Fig. 4. After data quality control, hourly averages of the wind veloc-
ity time series were calculated for all towers and all measurement levels. In the 
DFA method, the trend removal is of critical importance and depends on the used 
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fitting procedure in the boxes or intervals. In the current analysis, linear and 
higher-order polynomials for each composite date sets (the time series for each 
site or tower and each level) were calculated and labeled as DFA1, DFA2, DFA3, 
and DFA4. Similarly, the DCCA method was used. Although there are quite 
small differences between the DFA slopes, as seen in Fig. 4, it is necessary to 
determine which DFA is considered here. These graphs and the ones for other 
towers show that the regression line slope and shape are practically the same 
for each of all linear and higher-order polynomial fits, suggesting that the linear 
fit can be used in the present analysis. 

As can be seen in Fig. 4., the graphs are very similar, regardless the linear 
and higher-order polynomials used in detrending, i.e., the shape and slope pa-
rameters are practically the same for the linear regression and higher-order 
polynomials. Small differences between linear and higher order DFA may be 
attributed to increased fluctuations for larger scales, s, rather than for some 
external linear trends. Scaling exponents were estimated, as mentioned before, 
by linear regression of the log-log fluctuation curve. However, this can lead to 
spurious results when there is more than one scaling exponent, as in the case of 
crossover phenomena. One of the reasons for the application of the DFA tech-
nique is the possibility of revealing the crossover phenomenon that is distin-
guished by the short-range from the long-range scaling exponent. The crossover 
corresponds to a transition from non-persistence to persistence in a time series. 
In the cases of multiple scaling exponents, extracting of the global mean can be 
misleading. Crossover usually arises due to changes in correlation properties of 
the time series at different spatial or temporal scales. Recent studies have sug-
gested comparing the results using the original and randomized shuffled data 
to assure higher accuracy (Kristoufek, 2013; Wang et al., 2013; Zebende, 2011; 
Zebende et al., 2013). Similar properties between the original and reshuffled 

Figure 4. DFA results for the detrending polynomials of order 1, 2, 3, and 4 (DF1, DF2, DF3 and DF4) 
of the normalized average hourly wind speed for the Tonopah composite data sets (left panel) and the 
Reno-Carson City composite data sets (right panel). The 0.5 slope line is shown in each panel.
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wind speed data are apparent, with stronger persistence and the higher scaling 
exponent values. Further studies are needed to clarify these aspects and the 
crossover phenomena in the wind velocity time series.

A summary of power law index and statistical descriptors, the unitless shape, 
k, and the scale, c of the Weibull probability distribution for all towers and for 
the wind velocity composite data sets (multi-annual time series), is given in Tab. 
1. For details about general properties of the Weibull probability distribution see 
e.g., Wilks (2006) and for its applications to wind energy assessment and analy-
sis see e.g., Belu and Koračin (2009, 2013, 2015) or elsewhere in the literature. 
Values of the DFA scaling exponents, computed for all our time series are high-
er than 0.65, most of them being 0.70 or higher showing strong autocorrelations 
and significant persistence into the wind patterns for each location. The values 
of the DFA scaling exponents included in Table 1 are the average values obtained 
by applying linear and higher-order polynomial fits, to remove the trends in our 
DFA analysis. However, the DFA scaling exponents, resulting from various poly-
nomial fits, were quite similar regardless the polynomial fit order. Table 1 also 
includes the multi-annual values of the shape, k and scale, c, Weibull parameters 
at 40-m, 50-m and 60-m levels, respectively. The values of these parameters are 
showing a good wind energy potential for all studied areas. The Weibull distribu-
tion (fWB) is well accepted and the most commonly used in wind data analysis 
(see e.g., Wilks, 2006), and is given by:

 
−    = −    

1 kk

WB k
v vf k exp

cc
 (10)

The Weibull distribution is a function of two parameters: the shape param-
eter, k, and the scale factor, c, defining the curve shape or steepness and the 
mean value, and v is the mean wind speed in ms–1.

Table 1. Tower identification, measurement interval, measurement level, DFA variance values, multi-
annual k, and c Weibull parameters for each tower wind speed composite data sets.

Tower Measurement
interval

Measurement 
level (m)

DFA 
variance k c (ms–1)

Tonopah 24NW
Kingston 14SW
Luning 7W
Luning 5N
Stone Cabin 
Ophir Hill
Comstock WT1
Comstock WT2
Comstock WT3
Comstock WT1
Comstock WT2

11/2003–03/2008
12/2003–12/2007
09/2003–03/2008
09/2003–03/2008
04/2007–03/2008
06/2006–03/2009
04/2009–04/2012
04/2009–12/2011
04/2009–11/2009
10/2012–02/2014
10/2012–02/2014

50
50
50
50
60
40
60
60
30
60
60

0.713
0.705
0.716
0.746
0.885
0.657
0.695
0.691
0.693
0.663
0.703

1.703
1.415
1.346
1.335
1.667
1.745
1.561
1.578
1.540
1.561
1.642

6.04
4.82
4.39
3.99
5.92
7.72
6.94
6.10
4.88
6.18
5.35
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The DFA and DCCA procedures were applied to original 10-min wind veloc-
ity time series (as in Fig. 5) and to the hourly wind speed time series (as in Fig. 
4) in order to get more insight in the wind characteristics in the study areas. The 
main result shown in Fig. 5 (original wind speed time series) is that all graphs 
for the data sets at each tower present similar behavior and shapes for the wind 
speed and the maximum wind speed, hardly being distinguished from each other. 
The crossover point, the separation between the two scaling regions in the wind 
time series by the 0.5 slope line on the graphs, as determined in Fig. 5, is found 
to be in the range between 2.0 and 3.0. Wind speeds are showing significant 
persistence and long-term correlation properties (a > 0.5) for all Tonopah towers 
composite data sets (see Tab. 2 for details). Values of the scaling exponents are 
around 0.7 or higher for all towers and all data sets, showing significant persis-
tence in the wind regime for the study areas. 

The results for the Reno-Carson region (western Nevada) show similar pat-
terns as for the Tonopah area. However, this area exhibits higher potential for 
wind energy with higher persistence, although these data sets are shorter than 
the Tonopah towers data. The similar results found for the DFA analysis of 
maximum wind speed for all the data sets also demonstrate a high degree of 

Figure 5. Scaling behavior for the 10-min measured: wind speed (left panel); and the maximum wind 
speed for the Tonopah 50-m towers using composite data sets (2003–2008) (right panel). The 0.5 slope 
line is shown in each panel.

Table 2. DCCA cross-correlation coefficients (ρDCCA), for the Tonopah 50-m towers composite data sets 
(at the 50-m level).

Towers Tonopah 24NW Kingston 14SW Luning 7W Luning 5N

Tonopah 24NW
Kingston 14SW
Luning 7W
Luning 5 N

1.000
0.807
0.723
0.831

0.807
1.000
0.432
0.535

0.723
0.432
1.000
0.958

0.831
0.535
0.958
1.000



consistence in the wind behavior in the studied areas. In order to get more insight 
on the complementarity and variability of the wind energy resources in the study 
areas, besides the autocorrelations, computations included DFA variances, 
DCCA covariances, and DCCA cross-correlation coefficients for all available time 
series and for all possible tower combinations. 

The long-term cross-correlation DCCA results for the data collected during 
Tonopah experiment show that the DCCA cross-correlation coefficients are 
around 0.5 or higher, suggesting similar wind patterns, regardless the tower 
locations, altitudes, and topography. Table 2 summarizes the DCCA analysis 
and shows that the DCCA cross-correlation coefficients have only positive values 
at any scales, with average values ranging from 0.43 to 0.96. These positive 
values of the DCCA cross-correlation coefficients indicate that the wind velocity 
time series have high probability of being followed by similar wind energy pat-
terns (higher persistence), a valuable result from the wind energy development 
and operation point of view. These positive values of the DCCA cross-correlation 
coefficients also show a high degree of wind correlations among measurement 
sites.

5. Conclusions and future work

An analysis was presented on long-term correlations of wind speed time 
series recorded at several wind tower sites in Nevada between 2003 and 2014. 
All recorded wind velocity time series are characterized by long-term autocor-
relations and a persistent long-memory behavior. This property is also present 
for annual sliding windows, along the entire recorded period for each time series 
studied, however, with different exponent values. Similar diurnal and seasonal 
periodicity was observed in the autocorrelations for all wind time series. Statis-
tical cross-correlation tests were performed in order to quantify whether the 
cross-correlations are significant or not. 

A procedure to quantify whether cross-correlations are significant or not was 
as follows: firstly, the values of correlation coefficients were calculated using the 
DFA and DCCA methods which have theoretical advantages in results compared 
to standard statistical tests; secondly, critical values were generated to test 
whether cross-correlations are genuine or not using a random number surrogate 
and a shuffled data surrogate; and thirdly, the range of correlation coefficients 
was determined within which the cross-correlations can be considered statisti-
cally significant. The cross-correlations coefficients, computed using both regular 
statistical methods and detrended fluctuation analysis, indicate that wind data 
are auto- and cross-correlated.

These results suggest that the long-term correlations exhibit the same be-
havior across the studied areas in Nevada in spite of separation of about 300 km 
across the towers network. In conclusion, the calculated hourly and daily wind 
speed time series of the data recorded between 2003 and 2014 in the studied 
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areas in Nevada display long-term correlations with two distinct scaling regions 
into the daily and seasonal frequencies. For temporal scales longer than one day 
the scaling exponent is higher than 0.5 meaning that wind time series are per-
sistent, a very important result for wind energy development, grid integration, 
and exploitation. Future work is planned to compute power spectra of all avail-
able data sets and compare with the DFA and DCCA results in order to get ad-
ditional insight in the complementarity, variability, and the effects of complex 
terrain and synoptic processes relevant to the wind energy resources.
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SAŽETAK

Regionalna analiza obrazaca brzine vjetra  
u složenom terenu 

Radian Belu i Darko Koračin

Energija vjetra je energetski resurs ovisan o vremenu i klimi s prirodnim prostorno-
vremenskim promjenjivostima koje u vremenskim razmjerima idu od sekundi do sezona 
i godina, dok su na prostornim razmjerima promjenjivosti snažno uvjetovane složenošću 
terena i vegetacije. Kako bi se optimizirali sustavi energije vjetra i maksimizirala ekstrak-
cija energije, potrebna su mjerenja vjetra u različitim vremenskim razmacima, kao i 
prognoze energije vjetra. Ova studija se fokusira na prostorno-vremenske karakteristike 
brzine vjetra u složenom terenu, relevantne za procjenu energije vjetra i integraciju u 
elektrodistribucijske mreže, koristeći podatke prikupljene na 11 tornjeva s rasponima 
visina od 40 do 80 m tijekom 12-godišnjeg razdoblja u složenoj topografiji zapadno-
središnje i sjeverne Nevade, SAD. Autokorelacijska analiza, analiza poremećaja fluktu-
acija (DFA) i višestruka korelacijska analiza (DCCA) pokazale su snažnu koherenciju 
između brzine i smjera vjetra sa sporo opadajućom amplitudom višednevne periodičnosti 
s povećanjem razdoblja pomaka. Osim izražene dnevne periodičnosti na svim lokacijama, 
spektralna analiza i DFA također su pokazale značajne sezonske i godišnje periodičnosti, 
postojanost dugog pamćenja sa sličnim karakteristikama na svim mjestima i tornjevima 
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s relativno uskim rasponom Weibullovih parametara. DCCA ukazuje na slične uzorke 
vjetra na svakom tornju i jake korelacije između mjernih mjesta unatoč udaljenostima 
između tornjeva čak do 300 km. Područje sjeverne Nevade pokazuje veći potencijal vjetra 
i veću postojanost vjetra u usporedbi sa zapadno-središnjom regijom. Sveukupno, rezul-
tati DFA i DCCA ukazuju na veći stupanj komplementarnosti među podacima o vjetru 
na različitim mjestima u usporedbi s prethodnim standardnim statističkim analizama.

Ključne riječi: vjetrovni tornjevi, energija vjetra, procjena vjetrovnih resursa, analiza 
fluktuacija bez trendova, vjetrovni režim, autokorelaciona analiza, analiza unakrsnih 
korelacija bez trendova
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